Encyclopedia of AIDS

Living Edition
| Editors: Thomas J. Hope, Douglas Richman, Mario Stevenson

Viral Fitness in Hosts

  • Angela Ciuffi
Living reference work entry
DOI: https://doi.org/10.1007/978-1-4614-9610-6_367-1


The fitness of an organism can be defined as its ability to survive and successfully replicate in a specific environment.


Once the host has been effectively invaded, the virus needs to spread and replicate successfully, finding target cells and escaping host defenses at the same time. During this time, virus-host interactions take place, impacting viral fate. Each player has thus to obey certain constraints to survive and resist to selective pressures at the same time, implying some needs to adapt and evolve.

Viral fitness estimates the ability of a virus (or a virus genome sequence) to survive and reproduce in a specific environment (Fig. 1). Although conceptually simple, viral fitness results from a complex interplay between the virus and its host and implies that to adapt and survive, the virus has to evolve in a dynamic environment. Therefore, viral fitness is a relative value rather than an absolute measurement.


Human Immunodeficiency Virus Human Immunodeficiency Virus Infection Human Immunodeficiency Virus Transmission Cytidine Deaminase Human Immunodeficiency Virus Replication 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. Bartha I, Carlson JM, Brumme CJ, McLaren PJ, Brumme ZL, John M, Haas DW, Martinez-Picado J, Dalmau J, Lopez-Galindez C, Casado C, Rauch A, Gunthard HF, Bernasconi E, Vernazza P, Klimkait T, Yerly S, O’Brien SJ, Listgarten J, Pfeifer N, Lippert C, Fusi N, Kutalik Z, Allen TM, Muller V, Harrigan PR, Heckerman D, Telenti A, Fellay J. A genome-to-genome analysis of associations between human genetic variation, HIV-1 sequence diversity, and viral control. Elife. 2013;2:e01123.PubMedCentralCrossRefPubMedGoogle Scholar
  2. Blanco-Melo D, Venkatesh S, Bieniasz PD. Intrinsic cellular defenses against human immunodeficiency viruses. Immunity. 2012;37:399–411.PubMedCentralCrossRefPubMedGoogle Scholar
  3. Bushman FD, Malani N, Fernandes J, D’Orso I, Cagney G, Diamond TL, Zhou H, Hazuda DJ, Espeseth AS, Konig R, Bandyopadhyay S, Ideker T, Goff SP, Krogan NJ, Frankel AD, Young JA, Chanda SK. Host cell factors in HIV replication: meta-analysis of genome-wide studies. PLoS Pathog. 2009;5:e1000437.PubMedCentralCrossRefPubMedGoogle Scholar
  4. Clementi M, Lazzarin A. Human immunodeficiency virus type 1 fitness and tropism: concept, quantification, and clinical relevance. Clin Microbiol Infect. 2010;16:1532–8.CrossRefPubMedGoogle Scholar
  5. Coffin J, Swanstrom R. HIV pathogenesis: dynamics and genetics of viral populations and infected cells. Cold Spring Harb Perspect Med. 2013;3:a012526.PubMedCentralCrossRefPubMedGoogle Scholar
  6. Domingo E, Sheldon J, Perales C. Viral quasispecies evolution. Microbiol Mol Biol Rev. 2012;76:159–216.PubMedCentralCrossRefPubMedGoogle Scholar
  7. Dykes C, Demeter LM. Clinical significance of human immunodeficiency virus type 1 replication fitness. Clin Microbiol Rev. 2007;20:550–78.PubMedCentralCrossRefPubMedGoogle Scholar
  8. Fellay J, Shianna KV, Telenti A, Goldstein DB. Host genetics and HIV-1: the final phase? PLoS Pathog. 2010;6:e1001033.PubMedCentralCrossRefPubMedGoogle Scholar
  9. Fletcher CV, Staskus K, Wietgrefe SW, Rothenberger M, Reilly C, Chipman JG, Beilman GJ, Khoruts A, Thorkelson A, Schmidt TE, Anderson J, Perkey K, Stevenson M, Perelson AS, Douek DC, Haase AT, Schacker TW. Persistent HIV-1 replication is associated with lower antiretroviral drug concentrations in lymphatic tissues. Proc Natl Acad Sci U S A. 2014;111:2307–12.PubMedCentralCrossRefPubMedGoogle Scholar
  10. Gutierrez S, Michalakis Y, Blanc S. Virus population bottlenecks during within-host progression and host-to-host transmission. Curr Opin Virol. 2012;2:546–55.CrossRefPubMedGoogle Scholar
  11. Harris RS, Hultquist JF, Evans DT. The restriction factors of human immunodeficiency virus. J Biol Chem. 2012;287:40875–83.PubMedCentralCrossRefPubMedGoogle Scholar
  12. Hu WS, Hughes SH. HIV-1 reverse transcription. Cold Spring Harb Perspect Med. 2012;2:a006882.PubMedCentralCrossRefPubMedGoogle Scholar
  13. Jager S, Cimermancic P, Gulbahce N, Johnson JR, McGovern KE, Clarke SC, Shales M, Mercenne G, Pache L, Li K, Hernandez H, Jang GM, Roth SL, Akiva E, Marlett J, Stephens M, D’Orso I, Fernandes J, Fahey M, Mahon C, O’Donoghue AJ, Todorovic A, Morris JH, Maltby DA, Alber T, Cagney G, Bushman FD, Young JA, Chanda SK, Sundquist WI, Kortemme T, Hernandez RD, Craik CS, Burlingame A, Sali A, Frankel AD, Krogan NJ. Global landscape of HIV-human protein complexes. Nature. 2012;481:365–70.Google Scholar
  14. Kirchhoff F. Immune evasion and counteraction of restriction factors by HIV-1 and other primate lentiviruses. Cell Host Microbe. 2010;8:55–67.CrossRefPubMedGoogle Scholar
  15. Lauring AS, Andino R. Quasispecies theory and the behavior of RNA viruses. PLoS Pathog. 2010;6:e1001005.PubMedCentralCrossRefPubMedGoogle Scholar
  16. Malim MH, Bieniasz PD. HIV restriction factors and mechanisms of evasion. Cold Spring Harb Perspect Med. 2012;2:a006940.PubMedCentralCrossRefPubMedGoogle Scholar
  17. Mohammadi P, Desfarges S, Bartha I, Joos B, Zangger N, Munoz M, Gunthard HF, Beerenwinkel N, Telenti A, Ciuffi A. 24 hours in the life of HIV-1 in a T cell line. PLoS Pathog. 2013;9:e1003161.PubMedCentralCrossRefPubMedGoogle Scholar
  18. Nordkin LC. Virology: molecular biology and pathogenesis. Washington, DC: American Society for Microbiology Press; 2009.Google Scholar
  19. Pyndiah N, Telenti A, Rausell A. Evolutionary genomics and HIV restriction factors. Curr Opin HIV AIDS. 2015;10:79–83.CrossRefPubMedGoogle Scholar
  20. Sandler NG, Bosinger SE, Estes JD, Zhu RT, Tharp GK, Boritz E, Levin D, Wijeyesinghe S, Makamdop KN, del Prete GQ, Hill BJ, Timmer JK, Reiss E, Yarden G, Darko S, Contijoch E, Todd JP, Silvestri G, Nason M, Norgren Jr RB, Keele BF, Rao S, Langer JA, Lifson JD, Schreiber G, Douek DC. Type I interferon responses in rhesus macaques prevent SIV infection and slow disease progression. Nature. 2014;511:601–5.PubMedCentralCrossRefPubMedGoogle Scholar
  21. Schoggins JW. Interferon-stimulated genes: roles in viral pathogenesis. Curr Opin Virol. 2014;6:40–6.CrossRefPubMedGoogle Scholar
  22. Schoggins JW, Rice CM. Interferon-stimulated genes and their antiviral effector functions. Curr Opin Virol. 2011;1:519–25.PubMedCentralCrossRefPubMedGoogle Scholar
  23. Schoggins JW, Wilson SJ, Panis M, Murphy MY, Jones CT, Bieniasz P, Rice CM. A diverse range of gene products are effectors of the type I interferon antiviral response. Nature. 2011;472:481–5.PubMedCentralCrossRefPubMedGoogle Scholar
  24. Schoggins JW, MacDuff DA, Imanaka N, Gainey MD, Shrestha B, Eitson JL, Mar KB, Richardson RB, Ratushny AV, Litvak V, Dabelic R, Manicassamy B, Aitchison JD, Aderem A, Elliott RM, Garcia-Sastre A, Racaniello V, Snijder EJ, Yokoyama WM, Diamond MS, Virgin HW, Rice CM. Pan-viral specificity of IFN-induced genes reveals new roles for cGAS in innate immunity. Nature. 2014;505:691–5.PubMedCentralCrossRefPubMedGoogle Scholar
  25. Simon-Loriere E, Holmes EC. Why do RNA viruses recombine? Nat Rev Microbiol. 2011;9:617–26.PubMedCentralCrossRefPubMedGoogle Scholar
  26. Simon-Loriere E, Rossolillo P, Negroni M. RNA structures, genomic organization and selection of recombinant HIV. RNA Biol. 2011;8:280–6.CrossRefPubMedGoogle Scholar
  27. Snoeck J, Fellay J, Bartha I, Douek DC, Telenti A. Mapping of positive selection sites in the HIV-1 genome in the context of RNA and protein structural constraints. Retrovirology. 2011;8:87.PubMedCentralCrossRefPubMedGoogle Scholar
  28. Telenti A, Goldstein DB. Genomics meets HIV-1. Nat Rev Microbiol. 2006;4:865–73.PubMedCentralCrossRefPubMedGoogle Scholar
  29. Telenti A, Johnson WE. Host genes important to HIV replication and evolution. Cold Spring Harb Perspect Med. 2012;2:a007203.PubMedCentralCrossRefPubMedGoogle Scholar
  30. van Opijnen T, Berkhout B. The host environment drives HIV-1 fitness. Rev Med Virol. 2005;15:219–33.CrossRefPubMedGoogle Scholar
  31. Vuilleumier S, Bonhoeffer S. Contribution of recombination to the evolutionary history of HIV. Curr Opin HIV AIDS. 2015;10:84–9.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Institute of MicrobiologyUniversity Hospital Center and University of LausanneLausanneSwitzerland