Skip to main content

Macrophages in HIV Immunopathogenesis

  • Living reference work entry
  • First Online:
Book cover Encyclopedia of AIDS

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Allouch A, et al. p21-mediated RNR2 repression restricts HIV-1 replication in macrophages by inhibiting dNTP biosynthesis pathway. Proc Natl Acad Sci U S A. 2013;110(42):E3997–4006.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bergamaschi A, Pancino G. Host hindrance to HIV-1 replication in monocytes and macrophages. Retrovirology. 2010;7:31.

    Article  PubMed Central  PubMed  Google Scholar 

  • Berre S, et al. CD36-specific antibodies block release of HIV-1 from infected primary macrophages and its transmission to T cells. J Exp Med. 2013;210(12):2523–38.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Burdo TH, Lackner A, Williams KC. Monocyte/macrophages and their role in HIV neuropathogenesis. Immunol Rev. 2013;254(1):102–13.

    Article  PubMed Central  PubMed  Google Scholar 

  • Cassol E, et al. Macrophage polarization and HIV-1 infection. J Leukoc Biol. 2010;87(4):599–608.

    Article  CAS  PubMed  Google Scholar 

  • Chevalier MF, et al. The Th17/Treg ratio, IL-1RA and sCD14 levels in primary HIV infection predict the T-cell activation set point in the absence of systemic microbial translocation. PLoS Pathog. 2013;9(6):e1003453.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cros J, et al. Human CD14dim monocytes patrol and sense nucleic acids and viruses via TLR7 and TLR8 receptors. Immunity. 2010;33:375–386.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dai L, et al. IL-27 inhibits HIV-1 infection in human macrophages by down-regulating host factor SPTBN1 during monocyte to macrophage differentiation. J Exp Med. 2013;210(3):517–34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Donaldson YK, et al. Redistribution of HIV outside the lymphoid system with onset of AIDS. Lancet. 1994;343(8894):383–5.

    Article  CAS  PubMed  Google Scholar 

  • Dutertre CA, et al. Pivotal role of M-DC8 monocytes from viremic HIV-infected patients in TNFα overproduction in response to microbial products. Blood. 2012;120(11):2259–68.

    Google Scholar 

  • Goujon C, et al. Human MX2 is an interferon-induced post-entry inhibitor of HIV-1 infection. Nature. 2013;502(7472):559–62.

    Article  CAS  PubMed  Google Scholar 

  • Groot F, Welsch S, Sattentau QJ. Efficient HIV-1 transmission from macrophages to T cells across transient virological synapses. Blood. 2008;111(9):4660–3.

    Article  CAS  PubMed  Google Scholar 

  • Hasegawa A, et al. The level of monocyte turnover predicts disease progression in the macaque model of AIDS. Blood. 2009;114(14):2917–25. http://www.ncbi.nlm.nih.gov/pubmed/19383966.

  • Igarashi T, et al. Macrophage are the principal reservoir and sustain high virus loads in rhesus macaques after the depletion of CD4+ T cells by a highly pathogenic simian immunodeficiency virus/HIV type 1 chimera (SHIV): implications for HIV-1 infections of humans. Proc Natl Acad Sci U S A. 2001;98(2):658–63.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jakobsen MR, et al. IFI16 senses DNA forms of the lentiviral replication cycle and controls HIV-1 replication. Proc Natl Acad Sci U S A. 2013;110(48):E4571–80.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Koenig S, et al. Detection of AIDS virus in macrophages in brain tissue from AIDS patients with encephalopathy. Science. 1986;233(4768):1089–93.

    Article  CAS  PubMed  Google Scholar 

  • Laguette N, et al. SAMHD1 is the dendritic- and myeloid-cell-specific HIV-1 restriction factor counteracted by Vpx. Nature. 2011;474(7353):654–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Matreyek KA, Engelman A. Viral and cellular requirements for the nuclear entry of retroviral preintegration nucleoprotein complexes. Viruses. 2013;5(10):2483–511.

    Article  PubMed Central  PubMed  Google Scholar 

  • Murray PJ, Wynn TA. Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol. 2011;11(11):723–37.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Orenstein JM, Fox C, Wahl SM. Macrophages as a source of HIV during opportunistic infections. Science. 1997;276(5320):1857–61.

    Article  CAS  PubMed  Google Scholar 

  • Ortiz AM. et al. Depletion of CD4+ T cells abrogates post-peak decline of viremia in SIV-infected rhesus macaques. J Clin Invest. 2011;121(11):4433–45.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Paoletti A, et al. Multifaceted roles of purinergic receptors in viral infection. Microbes Infect. 2012;14(14):1278–83.

    Article  CAS  PubMed  Google Scholar 

  • Perno CF, et al. Inhibition of human immunodeficiency virus (HIV-1/HTLV-IIIBa-L) replication in fresh and cultured human peripheral blood monocytes/macrophages by azidothymidine and related 2′,3′-dideoxynucleosides. J Exp Med. 1988;168(3):1111–25.

    Article  CAS  PubMed  Google Scholar 

  • Rasaiyaah J, et al. HIV-1 evades innate immune recognition through specific cofactor recruitment. Nature. 2013;503(7476):402–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ryoo J. et al. The ribonuclease activity of SAMHD1 is required for HIV-1 restriction. Nat. Med. 2014; 20:936–941.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sharova N, et al. Macrophages archive HIV-1 virions for dissemination in trans. EMBO J. 2005;24(13):2481–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sigal A, et al. Cell-to-cell spread of HIV permits ongoing replication despite antiretroviral therapy. Nature. 2011;477(7362):95–8.

    Article  CAS  PubMed  Google Scholar 

  • Swaminathan G, et al. A role for microRNA-155 modulation in the anti-HIV-1 effects of Toll-like receptor 3 stimulation in macrophages. PLoS Pathog. 2012;8(9):e1002937.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tan J, Sattentau QJ. The HIV-1-containing macrophage compartment: a perfect cellular niche? Trends Microbiol. 2013;21(8):405–12.

    Article  CAS  PubMed  Google Scholar 

  • Thieblemont N, et al. CD14lowCD16high: a cytokine-producing monocyte subset which expands during human immunodeficiency virus infection. Eur J Immunol. 1995;25(12):3418–24.

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, et al. Sexual transmission and propagation of SIV and HIV in resting and activated CD4+ T cells. Science. 1999;286(5443):1353–7.

    Article  CAS  PubMed  Google Scholar 

  • Ziegler-Heitbrock L, et al. Nomenclature of monocytes and dendritic cells in blood. Blood. 2010;116(16):e74–80.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Research in authors’ laboratory was funded by grants from Sidaction and the National Agency for Research on AIDS and Viral Hepatitis (ANRS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianfranco Pancino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Allouch, A., Pancino, G. (2014). Macrophages in HIV Immunopathogenesis. In: Hope, T., Stevenson, M., Richman, D. (eds) Encyclopedia of AIDS. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9610-6_194-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9610-6_194-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-9610-6

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics