Dark Halo Crater (Impact, Optical)

  • Henrik HargitaiEmail author
Living reference work entry
DOI: https://doi.org/10.1007/978-1-4614-9213-9_97-1


A spot or annulus around an impact crater, having an albedo that is anomalously different from that of the surroundings, in some instances occurring with similar rays. Fresh, immature ejecta normally appears bright. Therefore bright halo is usually considered the regular variant and dark as anomalous.



Generally circular craters with raised rim surrounded by dark (or reddish or bright) haloes, commonly occurring with rays, often found with secondary craters. Dark halo and/or dark rays may only extend beyond a halo of bright proximal ejecta (e.g., Fig. 2, Copernicus H).


The same crater may possess a proximal halo-and-ray system and another that extends beyond the ejecta (Fig. 1). These may represent ejected materials (Head and...


Impact Crater Dark Halo Surface Dust Dark Material Mare Basalt 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. Caes DJ (2011) Dark halo craterlets. Moon-Wiki. http://the-moon.wikispaces.com/Dark+halo+craterlets
  2. Daubar IJ, McEwen AS, Byrne S, Kennedy MR, Ivanov B (2013) The current Martian cratering rate. Icarus 2225:506–516. doi:10.1016/j.icarus.2013.04.009CrossRefGoogle Scholar
  3. Elger TG (1895) The Moon - a Full description and map of its principal physical features. George Philip & Son, LondonGoogle Scholar
  4. Ernst CM, Murchie SL, Barnouin OS, Robinson MS et al (2010) Exposure of spectrally distinct material by impact craters on Mercury: implications for global stratigraphy. Icarus 209(1):210–223CrossRefGoogle Scholar
  5. Gaffey MJ (1997) Surface lithologic heterogeneity of asteroid 4 vesta. Icarus 127:130–157CrossRefGoogle Scholar
  6. Giguere TA, Hawke BR, Gaddis LR, Blewett DT, Davis JJ, Lucey PG, Smith GA, Spudis PD, Taylor GJ (2006) Remote sensing studies of the Dionysius region of the moon. J Geophys Res 111:E06009. doi:10.1029/2005JE002639, DOI:10.1029/2005JE002639#Link to external resource: 10.1029/2005JE002639Google Scholar
  7. Hawke BR, Bell JF (1981) Remote sensing studies of lunar dark-halo impact craters – preliminary results and implications for early volcanism. Lunar Planet Sci Conf XII (A82-31677 15–91:665–678, HoustonGoogle Scholar
  8. Head JW III, Wilson L (1979) Alphonsus-type dark-halo craters – morphology, morphometry and eruption conditions. Lunar Planet Sci Conf X:2861–2897, HoustonGoogle Scholar
  9. Jaumann R, Krohn K, McCord TB, Williams DA, Raymond CA, et al (2012) Investigating the origin of dark material on vesta: locations and geological context. 43rd Lunar Planet Sci Conf, abstract #1807, HoustonGoogle Scholar
  10. Lang KR (2003) The Cambridge guide to the solar system. Cambridge University Press, New YorkGoogle Scholar
  11. Malin MC, Edgett KS, Posiolova LV et al (2006) Present-day impact cratering rate and contemporary gully activity on mars. Science 314(5805):1573–1577. doi:10.1126/science.1135156CrossRefGoogle Scholar
  12. Reddy V, Nathues A, Le Corre L, Sierks H, Li Y-J, Gaskell R, McCoy T, Beck AW, Schröder SE, Pieters CM et al (2012) Color and albedo heterogeneity of vesta from dawn. Science 336(6082):700–704CrossRefGoogle Scholar
  13. Roedder E and Weiblen PW (1973) Apollo 17 “Orange Soil” - a result of Meteorite Impact on Liquid Lava? Nature 244(5413):210–212CrossRefGoogle Scholar
  14. Schenk PM, Mckinnon WB (1985) Dark halo craters and the thickness of grooved terrain on Ganymede. J Geophys Res 90:775–783CrossRefGoogle Scholar
  15. Schultz PH, Spudis PD (1979) Evidence for ancient mare volcanism. Lunar Planet Sci Conf X:2899–2918, HoustonGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Planetary Science Research GroupEötvös Loránd University, Institute of Geography and Earth SciencesBudapestHungary