Crater Rim

  • Stuart RobbinsEmail author
  • Veronica J. Bray
  • Henrik Hargitai
Living reference work entry


The crater rim is the edge of the crater typically elevated above the original ground surface. The maximum elevation of the rim is the rim crest.


Basin rim (for basins), Rampart (Elger 1895, obsolete), Ring mountain (obsolete)

Related Term

Rimless crater, rim crest


The crater rim consists of autochthonous, structurally elevated bedrock (Poelchau et al. 2009) overlaid by a thick layer of overturned allochthonous (displaced) ejecta (impact) (Fig. 1).


Impact Crater Crater Wall Crater Diameter Crater Floor Mass Wasting 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. Beer W, Mädler JH (1838) Physische Beobachtungen des Mars in der Opposition von 1837 Von den Herren W. Beer und Dr. Madler. Astron Nachrichten 15:219., Provided by the SAO/NASA Astrophysics Data System
  2. Bray VJ, Schenk PM, Melosh HJ, Morgan JV, Collins GS (2012) Ganymede crater dimensions – implications for peak and pit formation and development. Icarus 217:115–129CrossRefGoogle Scholar
  3. Cintala MJ, Head JW, Veverka J (1978) Characteristics of the cratering process on small satellites and asteroids. Lunar Planet Sci Conf 9th, A79-39253 16-91, 3803–3830, HoustonGoogle Scholar
  4. Collins G (2002) Numerical modelling of large impact crater collapse. PhD thesis, University of LondonGoogle Scholar
  5. Collins GS, Melosh HJ, Marcus RA (2005) Earth impact effects program: a web-based computer program for calculating the regional environmental consequences of a meteoroid impact on Earth. Meteorit Planet Sci 40(6):817–840CrossRefGoogle Scholar
  6. Craddock RA, Maxwell TA, Howard AD (1997) Crater morphometry and modification in the Sinus Sabaeus and Margaritifer Sinus regions of Mars. J Geophys Res 102(E6):13321–13340CrossRefGoogle Scholar
  7. Elger TG (1895) The Moon – a full description and map of its principal physical features. George Philip & Son, LondonGoogle Scholar
  8. French BM (1998) Traces of catastrophe: a handbook of shock-metamorphic effects in terrestrial meteorite impact structures. LPI Contribution No. 954, Lunar and Planetary Institute, Houston. 120 ppGoogle Scholar
  9. Glass BP, Simonson BM (2013) Distal impact ejecta layers. A record of large impacts in sedimentary deposits. Springer, HeidelbergCrossRefGoogle Scholar
  10. Grant JA, Schultz PH (1993) Degradation of selected terrestrial and martian impact craters. J Geophys Res 98(E6):11,025–11,042CrossRefGoogle Scholar
  11. Grant JA, Wilson SA, Cohen BA, Golombek MP, Geissler PE, Sullivan RJ, Kirk RL, Parker TJ (2008) Degradation of Victoria crater, Mars. J Geophys Res 113:E11010. doi:10.1029/2008JE003155CrossRefGoogle Scholar
  12. Melosh HJ (1989) Impact cratering: a geological process, Oxford monographs on geology and geophysics, 11. Oxford University Press, New YorkGoogle Scholar
  13. Ormö J, Lepinette A, Sturkell E, Lindström M, Housen KR, Holsappe KA (2010) Water resurge at marine-target impact craters analyzed with a combination of low-velocity impact experiments and numerical simulations. GSA Spec Pap 465:81–101. doi:10.1130/2010.2465(06)Google Scholar
  14. Poelchau MH, Kenkmann T, Kring DA (2009) Rim uplift and crater shape in Meteor Crater: effects of target heterogeneities and trajectory obliquity. J Geophys Res 114:E01006. doi:10.1029/2008JE003235Google Scholar
  15. Robbins SJ, Hynek BM (2012) A new global database of Mars impact craters ≥1 km: 1. Database creation, properties, and parameters. J Geophys Res Planet 117:E05004. doi:10.1029/2011JE003966Google Scholar
  16. Roddy DJ, Boyce JM, Colton GW, Dial AL Jr (1975) Meteor Crater, Arizona, rim drilling with thickness, structural uplift, diameter, depth, volume, and mass-balance calculations. Lunar Planet Sci Conf VI:2621–2644, HoustonGoogle Scholar
  17. Schenk PM (1991) Ganymede and Callisto: complex crater formation and planetary crusts. J Geophys Res 96:15635–15664CrossRefGoogle Scholar
  18. Schon SC, Head JW (2012) Gasa impact crater, Mars: very young gullies formed from impact into latitude-dependent mantle and debris-covered glacier deposits? Icarus 218:459–477. doi: 10.1016/j.icarus.2012.01.002., Provided by the SAO/NASA Astrophysics Data System
  19. Schröter JH (1791) Selenotopographische fragmente. CG Fleckeinsen, LilenthalGoogle Scholar
  20. Shoemaker EM (1960) Penetration mechanics of high velocity meteorites, illustrated by Meteor Crater, Arizona: International Geological Congress, 21st, Copenhagen, Report, pt. 18, pp 418–434, 1960Google Scholar
  21. Singer KN, McKinnon WB, Schenk PM, Moore JM (2012) Massive ice avalanches on Iapetus mobilized by friction reduction during flash heating. Nat Geosci 5:574–578CrossRefGoogle Scholar
  22. Stepinski TF, Mendenhall MP, Bue BD (2009) Machine cataloging of impact craters on Mars. Icarus 203:77–87. doi:10.1016/ j.icarus.2009.04.026CrossRefGoogle Scholar
  23. Stöffler D, Ryder G, Ivanov BA, Artemieva NA, Cintala MJ, Grieve RAF (2006) Cratering history and lunar chronology. Rev Mineral Geochem 60:519–596CrossRefGoogle Scholar
  24. Watters WA (2010) The concave planform of transient impact craters in fractured targets. 41st Lunar Planet Sci Conf, abstract #2684, HoustonGoogle Scholar
  25. Wieczorek MA, Phillips RJ (1999) Lunar multiring basins and the cratering process. Icarus 139:246–259CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Stuart Robbins
    • 1
    Email author
  • Veronica J. Bray
    • 2
  • Henrik Hargitai
    • 3
  1. 1.Laboratory for Atmospheric and Space ScienceUniversity of Colorado, BoulderBoulderUSA
  2. 2.Planetary LaboratoryUniversity of ArizonaTucsonUSA
  3. 3.Planetary Science Research GroupEötvös Loránd University, Institute of Geography and Earth SciencesBudapestHungary