Skip to main content

Mesoscale Positive Relief Landforms, Mars

  • Living reference work entry
  • First Online:
Encyclopedia of Planetary Landforms

Definition

“Mesoscale positive relief landform” is used here as an umbrella term for <1-km-diameter elevations in the northern hemisphere of Mars in majority, produced by a variety processes, without genetic implications (e.g., Burr et al. 2009a).

Description

Ten to one hundred-m-scale-diameter raised forms of circular, elongate, or irregular plan view shape, which may occur as single or composite structures, isolated or clustered or aligned.

Subtypes by Morphology

  1. (1)

    Elevated structures with raised center or flat top

    1. (1.1)

      Knobs: small, typically rounded, isolated structures, often with steep slopes (isolated peaks) (Fig. 8/1)

    2. (1.2)

      “Mounds” may refer to any typically round-shaped elevation or may be understood as dome-like elevations. Subdued mounds are characterized by low-angle slopes.

      1. (1.2.1)

        Cones (conical mounds) have a circular to subcircular base that tapers to a (in many cases theoretical) point at the top (the apex – the peak), typically with concave or straight slopes...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Allen C, Oehler D (2008) A case for ancient springs in Arabia Terra, Mars. Astrobiology 8:1093–1112

    Article  Google Scholar 

  • Amador ES, Allen CC, Oehler DZ (2010) Regional mapping and spectral analysis of mounds in Acidalia Planitia, Mars. 41st Lunar Planet Sci Conf, abstract #1037, Houston

    Google Scholar 

  • Beloussov VV (1962) Basic problems in Geotectonics. McGraw- Hill, New York

    Google Scholar 

  • Beyer RA, Melosh HJ, McEwen AS, Lorenz RD (2000) Salt diapirs in Candor Chasma, Mars? Lunar Planet Sci Conf 31, abstract 2022, Houston

    Google Scholar 

  • Bradak B, Kereszturi A (2002) Application of mud volcanism for rocky and icy planetary bodies. In: 34th COSPAR scientific assembly, The Second World Space Congress, Houston

    Google Scholar 

  • Broz P, Hauber E (2012) Pyroclastic cones on Mars as evidence for dry and wet explosive eruptions. In: Workshop on Mars – connecting planetary scientists in Europe conference, oral presentation, Budapest, Hungary

    Google Scholar 

  • Brož P, Hauber E (2012) Amenthes cones, Mars: hydrovolcanic (tuff) cones from phreatomagmatic explosive eruptions? 43rd Lunar Planet Sci Conf, abstract #1321, Houston

    Google Scholar 

  • Bruno BC, Fagents SA, Thordarson T, Baloga SM, Pilger E (2004) Clustering within rootless cone groups on Iceland and Mars: Effect of nonrandom processes, J Geophys Res 109, E07009, doi:10.1029/2004JE002273.

    Google Scholar 

  • Bruno BC, Fagents SA, Hamilton CW, Burr DM, Baloga SM (2006) Identification of volcanic rootless cones, ice mounds, and impact craters on Earth and Mars: using spatial distribution as a remote sensing tool. J Geophys Res 111, E06017. doi:10.1029/2005JE002510

    Google Scholar 

  • Burr DM, Bruno BC, Lanagan PD, Glaze LS, Jaeger WL, Soare RJ, Wan Bun Tseung J-M, Skinner JA Jr, Baloga SM (2009a) Mesoscale raised rim depressions (MRRDs) on Earth: a review of the characteristics, processes, and spatial distributions of analogs for Mars. Planet Space Sci 57:579–596

    Article  Google Scholar 

  • Burr DM, Tanaka KL, Yoshikawa K (2009b) Pingos on Earth and Mars. Planet Space Sci 57:541–555

    Article  Google Scholar 

  • Cabrol NA, Grin EA, Pollard WH (2000) Possible frost mounds in an ancient Martian lake bed. Icarus 145:91–107

    Article  Google Scholar 

  • Chan MA, Ormö J, Murchie S, Okubo CH, Komatsu G et al (2010) Geomorphic knobs of Candor Chasma, Mars: new Mars Reconnaissance Orbiter data and comparisons to terrestrial analogs. Icarus 205(1):138–153

    Article  Google Scholar 

  • Chapman MG, Tanaka KL (2001) Interior trough deposits on Mars: subice volcanoes? J Geophys Res 106(E5):10087–10100. doi:10.1029/2000JE001303

    Article  Google Scholar 

  • Chapman MG, Gudmundsson MT, Russell AJ, Hare TM (2003) Possible Juventae Chasma sub-ice volcanic eruptions and Maja Valles ice outburst floods, Mars: implications of MGS crater densities, geomorphology, and topography. J Geophys Res 108(E10):5113

    Article  Google Scholar 

  • Clarke JDA, Stoker C (2003) Mound spring complexes in central Australia: an analog for martian groundwater fed outflow channels? 34th Lunar Planet Sci Conf, abstract #1504, Houston

    Google Scholar 

  • Clarke J, Bourke M, Nelson P, Manga M, Fonseca J (2007) The Dalhousie mound spring complex as a guide to Martian landforms, processes, and exploration. In: Proceedings of the 7th Australian Mars exploration conference, Mars Society Australia, No. Dmc

    Google Scholar 

  • de Pablo MA, Komatsu G (2009) Possible pingo fields in the Utopia basin, Mars: geological and climatical implications. Icarus 199(1):49–74

    Article  Google Scholar 

  • Diniega S, Sigelmann L, Sangha S, Smrekar SE (2012) Identification and survey of martian lava inflationary features. 43rd Lunar Planet Sci Conf, abstract #2537, Houston

    Google Scholar 

  • Dundas CM (2009) Investigations of the Martian Mid-Latitudes: implications for ground ice. PhD dissertation. The University Of Arizona

    Google Scholar 

  • Dundas CM, McEwen AS (2010) An assessment of evidence for pingos on Mars using HiRISE. Icarus 205:244–258

    Article  Google Scholar 

  • Dundas CM, Mellon MT, McEwen AS, Lefort A, Keszthelyi LP, Thomas N, HiRISE Team (2008) HiRISE observations of fractured mounds: possible Martian pingos. Geophys Res Lett 35(4):L04201

    Article  Google Scholar 

  • Farrand WH, Gaddis LR (2003) THEMIS observations of pitted cones in Acidalia Planitia and Cydonia Mensae. In: Sixth international conference on Mars LPI, #3094, Pasadena

    Google Scholar 

  • Farrand WH, Gaddis LR, Keszthelyi L (2005) Pitted cones and domes on Mars: observations in Acidalia Planitia and Cydonia Mensae using MOC, THEMIS, and TES data. J Geophys Res 110:E05005. doi:10.1029/2004JE002297

    Google Scholar 

  • Fishbaugh KE, Head JW III (2000) North polar region of Mars: topography of circumpolar deposits from Mars Orbiter Laser Altimeter (MOLA) data and evidence for asymmetric retreat of the polar cap. J Geophys Res 105(E9):22455–22486

    Article  Google Scholar 

  • Gaidos E, Marion G (2003) Geological and geochemical legacy of a cold early Mars. J Geophys Res 108(E6):5055

    Article  Google Scholar 

  • Garvin JB, Sakimoto SEH, Frawley JJ, Schnetzlerd CC, Wright HM (2000) Topographic evidence for geologically recent near-polar volcanism on Mars. Icarus 145:648–652

    Article  Google Scholar 

  • Ghent RR, Anderson SW, Pithawala TM (2012) The formation of small cones in Isidis Planitia, Mars through mobilization of pyroclastic surge deposits. Icarus 217:169–183

    Article  Google Scholar 

  • Giacomini L (2010) Geological mapping and analysis of Daedalia Planum Lava Field (Mars). Doctoral thesis. Università degli Studi di Padova. http://paduaresearch.cab.unipd.it/2678/1/Giacomini_PhD_thesis_front.pdf

  • Giacomini L, Ferrari S, Massironi M (2011) Tumuli vs pingos: a comparative study between Daedalia Planum and Elysium Planitia features. 42nd Lunar Planet Sci Conf, abstract #1118, Houston

    Google Scholar 

  • Glaze LS, Anderson SW, Stofan ER, Baloga S, Smrekar SE (2005) Statistical distribution of tumuli on pahoehoe flow surfaces: analysis of examples in Hawaii and Iceland and potential applications to lava flows on Mars. J Geophys Res 110:B08202. doi:10.1029/2004JB003564

    Google Scholar 

  • Greeley R, Fagents SA (2001) Volcanic Pseudocraters on Mars: icelandic analogs. Lunar Planet Sci Conf, abstract XXXII, abstract #1871, Houston

    Google Scholar 

  • Greeley R, Guest JE (1987) Geologic map of the Eastern equatorial region of Mars. USGS. USGS miscellaneous investigations series map I–1802–B

    Google Scholar 

  • Greeley R, Spudis PD (1981) Volcanism on Mars. Rev Geophys Space Phys 19(1):13–41

    Article  Google Scholar 

  • Hamilton CW, Fagents SA, Wilson L (2010) Explosive lava-water interactions in Elysium Planitia, Mars: geologic and thermodynamic constraints on the formation of the Tartarus Colles cone groups. J Geophys Res 115, E09006. doi:10.1029/2009JE003546

    Google Scholar 

  • Hauber E, Reiss D, Ulrich M et al (2011) Landscape evolution in Martian mid-latitude regions: insights from analogous periglacial landforms in Svalbard. Geol Soc Lond Spec Publ 356:111–131. doi:10.1144/SP356.7

    Article  Google Scholar 

  • Jaeger WL, Keszthelyi LP, Burr DM et al (2005) Basaltic ring structures as an analog for ring features in Athabasca Valles, Mars. Lunar Planet Sci Conf XXXVI, abstract #1886, Houston

    Google Scholar 

  • Jaeger WL, Keszthelyi LP, McEwen AS, Dundas CM, Russell PS (2007) Athabasca Valles, Mars: a lava-draped channel system. Science 317:1709–1711

    Article  Google Scholar 

  • Jaeger WL, Keszthelyi LP, Skinner JA Jr, Milazzo MP, McEwen AS et al (2010) Emplacement of the youngest flood lava on Mars: a short, turbulent story. Icarus 205:230–243

    Article  Google Scholar 

  • Keszthelyi L, Jaeger W, McEwen A, Tornabene L, Beyer RA, Dundas C, Milazzo M (2008) High Resolution Imaging Science Experiment (HiRISE) images of volcanic terrains from the first 6 months of the Mars Reconnaissance Orbiter Primary Science Phase. J Geophys Res 113:E04005. doi:10.1029/2007JE002968

    Google Scholar 

  • Keszthelyi LP, Jaeger WL, Dundas CM, Martínez-Alonso S, McEwen AS, Milazzo MP (2010) Hydrovolcanic features on Mars: preliminary observations from the first Mars year of HiRISE imaging. Icarus 205(1):211–229

    Article  Google Scholar 

  • Komar PD (1991) Mud volcanoes on Mars? In: Reports of planetary geology and geophysics program 1990. NASA, Washington, DC, pp 539–541

    Google Scholar 

  • Komatsu G, Okubo CH, Wray JJ, Gallagher R, Orosei R, Cardinale M, Chan MA, Ormo J (2012) Small mounds in Chryse Planitia, Mars: testing a Mud Volcano hypothesis. 43rd Lunar Planet Sci Conf, abstract #1103, Houston

    Google Scholar 

  • Lanagan PD, McEwen AS, Keszthelyi LP, Thordarson T (2001) Rootless cones on Mars indicating the presence of shallow equatorial ground ice in recent times. Geophys Res Lett 28(12):2365–236

    Article  Google Scholar 

  • Lanz JK, Saric MB (2009) Cone fields in S W Elysium Planitia: hydrothermal venting on Mars? J Geophys Res 114:E02008. doi:10.1029/2008JE003209

    Google Scholar 

  • Lanz JK, Wagner R, Wolf U, Neukum G, Kröchert J (2010) Volcanic rift zone and associated cinder cone field in Utopia Planitia, Mars. 41st Lunar Planet Sci Conf, abstract #1366, Houston

    Google Scholar 

  • Mangold N (2003) Patterned ground on Mars: evidence for recent climatic variations. In: Phillips, Springman, Arenson (eds) Permafrost. Swets & Zeitlinger, Lisse, pp 723–728

    Google Scholar 

  • Martínez-Alonso S, Jakosky BM, Mellon MT, Putzig NE (2005) A volcanic interpretation of Gusev Crater surface materials from thermophysical, spectral, and morphological evidence. J Geophys Res 110:E01003. doi:10.1029/2004JE002327

    Google Scholar 

  • McEwen A (2013) Cones and inflated lava flows. http://hirise.lpl.arizona.edu/ESP_030192_2020

  • McEwen AS, Preblich BS, Turtle EP, Artemieva NA, Golombek MP, Hurst M, Kirk RL, Burr DM, Christensen PR (2005) The rayed crater Zunil and interpretations of small impact craters on Mars. Icarus 176:351–381

    Article  Google Scholar 

  • McGill GE (2002) The small domes and pits of Cydonia Mensae and adjacent Acidalia Planitia, Mars: implications for the role of near-surface water or ice. Lunar Planet Sci Conf XXXIII, abstract #1126, Houston

    Google Scholar 

  • Milliken RE, Grotzinger J, Beyer RA, Murchie S, McEwen A, et al (2007) Evidence for salt tectonics in Valles Marineris, Mars. In: Seventh international conference on Mars # 3383, Pasadena

    Google Scholar 

  • Murchie S, Treiman A (1994) Tartarus Colles: a sampling of the Martian highlands. In: Golombek M (ed) Mars Pathfinder landing site workshop, Houston, pp 32–33 (SEE N95-16176 04-91)

    Google Scholar 

  • Oehler DZ, Allen CC (2010) Evidence for pervasive mud volcanism in Acidalia Planitia, Mars. Icarus 208(2):636–657

    Article  Google Scholar 

  • Oehler DZ, Allen CC (2011) Habitability of a large ghost crater in Chryse Planitia, Mars. Exploring Mars habitability, 14 June 2011. Lisbon

    Google Scholar 

  • Osinski GR, Soare RJ (2007) Circular structures in Utopia Planitia, mars: impact v. Periglacial origin and implications for assessing ground-ice content. Lunar Planet Sci Conf XXXVIII, abstract #1609, Houston

    Google Scholar 

  • Pacifici A, Ori GG, Komatsu GK, Pondrelli M (2007) Geomorphological analysis of Ares Vallis (Mars) by using HRSC (MEX) data: catastrophic floods and glacial morphologies. Mem S A It Suppl 11:119–123

    Google Scholar 

  • Page DP (2007) Recent low-latitude freeze–thaw on Mars. Icarus 189(1):83–117

    Article  Google Scholar 

  • Page DP, Murray JB (2006) Stratigraphic and morphologic evidence for pingo genesis in the Cerberus plains. Icarus 183:46–54

    Article  Google Scholar 

  • Peterson JE (1976) Volcanism in the Noachis-Hellas region of Mars. In: Proceedings of the international colloquium of planetary geology, Rome 22–30 Sept. Geol. Romana 15, pp 493–507, citing Peterson JE (1974) A geologic analysis of Martian surface features from Mariner 9 photography as a basis for systematic geologic mapping of Mars: Geology of the Noachis Quadrangle, Mars PhD thesis. Final technical report. NASA-CR-141300

    Google Scholar 

  • Pondrelli M, Rossi AP, Ori GG, van Gasselt S (2010) Sedimentary volcanoes in the Crommelin South Crater, Mars. In: First international conference on Mars sedimentology and stratigraphy #6025, El Paso

    Google Scholar 

  • Pondrelli M, Rossi AP, Ori GG et al (2011) Mud volcanoes in the geologic record of Mars: the case of Firsoff crater. Earth Planet Sci Lett 304:511–519

    Article  Google Scholar 

  • Sánchez-Bayton M, Tréguier E, Herraiz M, Martin P (2012) Identification of geologic structures in the North circumpolar area of Mars. In: Workshop on Mars – connecting planetary scientists in Europe conference, oral presentation, Budapest

    Google Scholar 

  • Skinner JA Jr, Mazzini A (2009) Martian mud volcanism: terrestrial analogs and implications for formational scenarios. Mar Pet Geol 26:1866–1878

    Article  Google Scholar 

  • Skinner JA Jr, Tanaka KL (2007) Evidence for and implications of sedimentary diapirism and mud volcanism in the southern Utopia highland–lowland boundary plain, Mars. Icarus 186(1):41–59

    Article  Google Scholar 

  • Soare RJ, Burr DM, Wan Bun Tseung JM (2005) Possible pingos and a periglacial landscape in northwest Utopia Planitia. Icarus 174:373–382

    Article  Google Scholar 

  • Soare RJ, Osinski GR, Roehm CL (2008) Thermokarst lakes and ponds on Mars in the very recent (late Amazonian) past. Earth Planet Sci Lett 272(1–2):382–393

    Article  Google Scholar 

  • Soare RJ, Costard F, Pearce GD, Séjourné A (2012) A re-interpretation of the recent stratigraphical history of Utopia Planitia, Mars: Implications for late-Amazonian periglacial and ice-rich terrain. Planetary and Space Science 60(1):131–139

    Google Scholar 

  • Socki RA, Sun T, Niles PB, Harvey RP, Bish DL, Tonui E (2012) Antarctic mirabilite mounds as Mars analogs: the Lewis Cliffs ice tongue revisited. 43rd Lunar Planet Sci Conf, abstract #2718, Houston

    Google Scholar 

  • Tanaka KL (1997) Sedimentary history and mass flow structures of Chryse and Acidalia Planitiae, Mars. J Geophys Res 102(E2):4131–4149. doi:10.1029/96JE02862

    Article  Google Scholar 

  • Tanaka KL (2005) Geology and insolation-driven climatic history of Amazonian north polar materials on Mars. Nature 437:991–994

    Article  Google Scholar 

  • Ulrich M, Wagner D, Hauber E, de Vera J-P, Schirrmeister L (2012) Habitable periglacial landscapes in martian mid-latitudes. Icarus 219:345–357

    Article  Google Scholar 

  • Vaucher J, Baratoux D, Mangold N, Pinet P, Kurita K, Grégoire M (2009) The volcanic history of central Elysium Planitia: implications for martian magmatism. Icarus 204:418–442

    Article  Google Scholar 

  • Warner NH, Farmer JD (2008) The origin of conical mounds at the mouth of Chasma Boreale. J Geophys Res 113:E11008. doi:10.1029/2007JE003028

    Article  Google Scholar 

  • West M (1974) Martian volcanism: additional observations and evidence for pyroclastic activity. Icarus 21(1):1–11

    Article  Google Scholar 

  • Woodward-Lynas C, Guigné JY (2003) Ice keel scour marks on Mars: evidence for floating and grounding ice floes in Kasei Valles. Oceanography 16(4):90–97

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henrik Hargitai .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Hargitai, H. (2014). Mesoscale Positive Relief Landforms, Mars. In: Encyclopedia of Planetary Landforms. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9213-9_585-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9213-9_585-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-9213-9

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics