Mesoscale Positive Relief Landforms, Mars

Living reference work entry


“Mesoscale positive relief landform” is used here as an umbrella term for <1-km-diameter elevations in the northern hemisphere of Mars in majority, produced by a variety processes, without genetic implications (e.g., Burr et al. 2009a).


Ten to one hundred-m-scale-diameter raised forms of circular, elongate, or irregular plan view shape, which may occur as single or composite structures, isolated or clustered or aligned.

Subtypes by Morphology

  1. (1)
    Elevated structures with raised center or flat top
    1. (1.1)

      Knobs: small, typically rounded, isolated structures, often with steep slopes (isolated peaks) (Fig. 8/1)

    2. (1.2)
      “Mounds” may refer to any typically round-shaped elevation or may be understood as dome-like elevations. Subdued mounds are characterized by low-angle slopes.
      1. (1.2.1)

        Cones (conical mounds) have a circular to subcircular base that tapers to a (in many cases theoretical) point at the top (the apex – the peak), typically with concave or straight slopes...


Impact Crater Cinder Cone Salt Diapir Tuff Ring Tuff Cone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. Allen C, Oehler D (2008) A case for ancient springs in Arabia Terra, Mars. Astrobiology 8:1093–1112CrossRefGoogle Scholar
  2. Amador ES, Allen CC, Oehler DZ (2010) Regional mapping and spectral analysis of mounds in Acidalia Planitia, Mars. 41st Lunar Planet Sci Conf, abstract #1037, HoustonGoogle Scholar
  3. Beloussov VV (1962) Basic problems in Geotectonics. McGraw- Hill, New YorkGoogle Scholar
  4. Beyer RA, Melosh HJ, McEwen AS, Lorenz RD (2000) Salt diapirs in Candor Chasma, Mars? Lunar Planet Sci Conf 31, abstract 2022, HoustonGoogle Scholar
  5. Bradak B, Kereszturi A (2002) Application of mud volcanism for rocky and icy planetary bodies. In: 34th COSPAR scientific assembly, The Second World Space Congress, HoustonGoogle Scholar
  6. Broz P, Hauber E (2012) Pyroclastic cones on Mars as evidence for dry and wet explosive eruptions. In: Workshop on Mars – connecting planetary scientists in Europe conference, oral presentation, Budapest, HungaryGoogle Scholar
  7. Brož P, Hauber E (2012) Amenthes cones, Mars: hydrovolcanic (tuff) cones from phreatomagmatic explosive eruptions? 43rd Lunar Planet Sci Conf, abstract #1321, HoustonGoogle Scholar
  8. Bruno BC, Fagents SA, Thordarson T, Baloga SM, Pilger E (2004) Clustering within rootless cone groups on Iceland and Mars: Effect of nonrandom processes, J Geophys Res 109, E07009, doi:10.1029/2004JE002273.Google Scholar
  9. Bruno BC, Fagents SA, Hamilton CW, Burr DM, Baloga SM (2006) Identification of volcanic rootless cones, ice mounds, and impact craters on Earth and Mars: using spatial distribution as a remote sensing tool. J Geophys Res 111, E06017. doi:10.1029/2005JE002510Google Scholar
  10. Burr DM, Bruno BC, Lanagan PD, Glaze LS, Jaeger WL, Soare RJ, Wan Bun Tseung J-M, Skinner JA Jr, Baloga SM (2009a) Mesoscale raised rim depressions (MRRDs) on Earth: a review of the characteristics, processes, and spatial distributions of analogs for Mars. Planet Space Sci 57:579–596CrossRefGoogle Scholar
  11. Burr DM, Tanaka KL, Yoshikawa K (2009b) Pingos on Earth and Mars. Planet Space Sci 57:541–555CrossRefGoogle Scholar
  12. Cabrol NA, Grin EA, Pollard WH (2000) Possible frost mounds in an ancient Martian lake bed. Icarus 145:91–107CrossRefGoogle Scholar
  13. Chan MA, Ormö J, Murchie S, Okubo CH, Komatsu G et al (2010) Geomorphic knobs of Candor Chasma, Mars: new Mars Reconnaissance Orbiter data and comparisons to terrestrial analogs. Icarus 205(1):138–153CrossRefGoogle Scholar
  14. Chapman MG, Tanaka KL (2001) Interior trough deposits on Mars: subice volcanoes? J Geophys Res 106(E5):10087–10100. doi:10.1029/2000JE001303CrossRefGoogle Scholar
  15. Chapman MG, Gudmundsson MT, Russell AJ, Hare TM (2003) Possible Juventae Chasma sub-ice volcanic eruptions and Maja Valles ice outburst floods, Mars: implications of MGS crater densities, geomorphology, and topography. J Geophys Res 108(E10):5113CrossRefGoogle Scholar
  16. Clarke JDA, Stoker C (2003) Mound spring complexes in central Australia: an analog for martian groundwater fed outflow channels? 34th Lunar Planet Sci Conf, abstract #1504, HoustonGoogle Scholar
  17. Clarke J, Bourke M, Nelson P, Manga M, Fonseca J (2007) The Dalhousie mound spring complex as a guide to Martian landforms, processes, and exploration. In: Proceedings of the 7th Australian Mars exploration conference, Mars Society Australia, No. DmcGoogle Scholar
  18. de Pablo MA, Komatsu G (2009) Possible pingo fields in the Utopia basin, Mars: geological and climatical implications. Icarus 199(1):49–74CrossRefGoogle Scholar
  19. Diniega S, Sigelmann L, Sangha S, Smrekar SE (2012) Identification and survey of martian lava inflationary features. 43rd Lunar Planet Sci Conf, abstract #2537, HoustonGoogle Scholar
  20. Dundas CM (2009) Investigations of the Martian Mid-Latitudes: implications for ground ice. PhD dissertation. The University Of ArizonaGoogle Scholar
  21. Dundas CM, McEwen AS (2010) An assessment of evidence for pingos on Mars using HiRISE. Icarus 205:244–258CrossRefGoogle Scholar
  22. Dundas CM, Mellon MT, McEwen AS, Lefort A, Keszthelyi LP, Thomas N, HiRISE Team (2008) HiRISE observations of fractured mounds: possible Martian pingos. Geophys Res Lett 35(4):L04201CrossRefGoogle Scholar
  23. Farrand WH, Gaddis LR (2003) THEMIS observations of pitted cones in Acidalia Planitia and Cydonia Mensae. In: Sixth international conference on Mars LPI, #3094, PasadenaGoogle Scholar
  24. Farrand WH, Gaddis LR, Keszthelyi L (2005) Pitted cones and domes on Mars: observations in Acidalia Planitia and Cydonia Mensae using MOC, THEMIS, and TES data. J Geophys Res 110:E05005. doi:10.1029/2004JE002297Google Scholar
  25. Fishbaugh KE, Head JW III (2000) North polar region of Mars: topography of circumpolar deposits from Mars Orbiter Laser Altimeter (MOLA) data and evidence for asymmetric retreat of the polar cap. J Geophys Res 105(E9):22455–22486CrossRefGoogle Scholar
  26. Gaidos E, Marion G (2003) Geological and geochemical legacy of a cold early Mars. J Geophys Res 108(E6):5055CrossRefGoogle Scholar
  27. Garvin JB, Sakimoto SEH, Frawley JJ, Schnetzlerd CC, Wright HM (2000) Topographic evidence for geologically recent near-polar volcanism on Mars. Icarus 145:648–652CrossRefGoogle Scholar
  28. Ghent RR, Anderson SW, Pithawala TM (2012) The formation of small cones in Isidis Planitia, Mars through mobilization of pyroclastic surge deposits. Icarus 217:169–183CrossRefGoogle Scholar
  29. Giacomini L (2010) Geological mapping and analysis of Daedalia Planum Lava Field (Mars). Doctoral thesis. Università degli Studi di Padova.
  30. Giacomini L, Ferrari S, Massironi M (2011) Tumuli vs pingos: a comparative study between Daedalia Planum and Elysium Planitia features. 42nd Lunar Planet Sci Conf, abstract #1118, HoustonGoogle Scholar
  31. Glaze LS, Anderson SW, Stofan ER, Baloga S, Smrekar SE (2005) Statistical distribution of tumuli on pahoehoe flow surfaces: analysis of examples in Hawaii and Iceland and potential applications to lava flows on Mars. J Geophys Res 110:B08202. doi:10.1029/2004JB003564Google Scholar
  32. Greeley R, Fagents SA (2001) Volcanic Pseudocraters on Mars: icelandic analogs. Lunar Planet Sci Conf, abstract XXXII, abstract #1871, HoustonGoogle Scholar
  33. Greeley R, Guest JE (1987) Geologic map of the Eastern equatorial region of Mars. USGS. USGS miscellaneous investigations series map I–1802–BGoogle Scholar
  34. Greeley R, Spudis PD (1981) Volcanism on Mars. Rev Geophys Space Phys 19(1):13–41CrossRefGoogle Scholar
  35. Hamilton CW, Fagents SA, Wilson L (2010) Explosive lava-water interactions in Elysium Planitia, Mars: geologic and thermodynamic constraints on the formation of the Tartarus Colles cone groups. J Geophys Res 115, E09006. doi:10.1029/2009JE003546Google Scholar
  36. Hauber E, Reiss D, Ulrich M et al (2011) Landscape evolution in Martian mid-latitude regions: insights from analogous periglacial landforms in Svalbard. Geol Soc Lond Spec Publ 356:111–131. doi:10.1144/SP356.7CrossRefGoogle Scholar
  37. Jaeger WL, Keszthelyi LP, Burr DM et al (2005) Basaltic ring structures as an analog for ring features in Athabasca Valles, Mars. Lunar Planet Sci Conf XXXVI, abstract #1886, HoustonGoogle Scholar
  38. Jaeger WL, Keszthelyi LP, McEwen AS, Dundas CM, Russell PS (2007) Athabasca Valles, Mars: a lava-draped channel system. Science 317:1709–1711CrossRefGoogle Scholar
  39. Jaeger WL, Keszthelyi LP, Skinner JA Jr, Milazzo MP, McEwen AS et al (2010) Emplacement of the youngest flood lava on Mars: a short, turbulent story. Icarus 205:230–243CrossRefGoogle Scholar
  40. Keszthelyi L, Jaeger W, McEwen A, Tornabene L, Beyer RA, Dundas C, Milazzo M (2008) High Resolution Imaging Science Experiment (HiRISE) images of volcanic terrains from the first 6 months of the Mars Reconnaissance Orbiter Primary Science Phase. J Geophys Res 113:E04005. doi:10.1029/2007JE002968Google Scholar
  41. Keszthelyi LP, Jaeger WL, Dundas CM, Martínez-Alonso S, McEwen AS, Milazzo MP (2010) Hydrovolcanic features on Mars: preliminary observations from the first Mars year of HiRISE imaging. Icarus 205(1):211–229CrossRefGoogle Scholar
  42. Komar PD (1991) Mud volcanoes on Mars? In: Reports of planetary geology and geophysics program 1990. NASA, Washington, DC, pp 539–541Google Scholar
  43. Komatsu G, Okubo CH, Wray JJ, Gallagher R, Orosei R, Cardinale M, Chan MA, Ormo J (2012) Small mounds in Chryse Planitia, Mars: testing a Mud Volcano hypothesis. 43rd Lunar Planet Sci Conf, abstract #1103, HoustonGoogle Scholar
  44. Lanagan PD, McEwen AS, Keszthelyi LP, Thordarson T (2001) Rootless cones on Mars indicating the presence of shallow equatorial ground ice in recent times. Geophys Res Lett 28(12):2365–236CrossRefGoogle Scholar
  45. Lanz JK, Saric MB (2009) Cone fields in S W Elysium Planitia: hydrothermal venting on Mars? J Geophys Res 114:E02008. doi:10.1029/2008JE003209Google Scholar
  46. Lanz JK, Wagner R, Wolf U, Neukum G, Kröchert J (2010) Volcanic rift zone and associated cinder cone field in Utopia Planitia, Mars. 41st Lunar Planet Sci Conf, abstract #1366, HoustonGoogle Scholar
  47. Mangold N (2003) Patterned ground on Mars: evidence for recent climatic variations. In: Phillips, Springman, Arenson (eds) Permafrost. Swets & Zeitlinger, Lisse, pp 723–728Google Scholar
  48. Martínez-Alonso S, Jakosky BM, Mellon MT, Putzig NE (2005) A volcanic interpretation of Gusev Crater surface materials from thermophysical, spectral, and morphological evidence. J Geophys Res 110:E01003. doi:10.1029/2004JE002327Google Scholar
  49. McEwen A (2013) Cones and inflated lava flows.
  50. McEwen AS, Preblich BS, Turtle EP, Artemieva NA, Golombek MP, Hurst M, Kirk RL, Burr DM, Christensen PR (2005) The rayed crater Zunil and interpretations of small impact craters on Mars. Icarus 176:351–381CrossRefGoogle Scholar
  51. McGill GE (2002) The small domes and pits of Cydonia Mensae and adjacent Acidalia Planitia, Mars: implications for the role of near-surface water or ice. Lunar Planet Sci Conf XXXIII, abstract #1126, HoustonGoogle Scholar
  52. Milliken RE, Grotzinger J, Beyer RA, Murchie S, McEwen A, et al (2007) Evidence for salt tectonics in Valles Marineris, Mars. In: Seventh international conference on Mars # 3383, PasadenaGoogle Scholar
  53. Murchie S, Treiman A (1994) Tartarus Colles: a sampling of the Martian highlands. In: Golombek M (ed) Mars Pathfinder landing site workshop, Houston, pp 32–33 (SEE N95-16176 04-91)Google Scholar
  54. Oehler DZ, Allen CC (2010) Evidence for pervasive mud volcanism in Acidalia Planitia, Mars. Icarus 208(2):636–657CrossRefGoogle Scholar
  55. Oehler DZ, Allen CC (2011) Habitability of a large ghost crater in Chryse Planitia, Mars. Exploring Mars habitability, 14 June 2011. LisbonGoogle Scholar
  56. Osinski GR, Soare RJ (2007) Circular structures in Utopia Planitia, mars: impact v. Periglacial origin and implications for assessing ground-ice content. Lunar Planet Sci Conf XXXVIII, abstract #1609, HoustonGoogle Scholar
  57. Pacifici A, Ori GG, Komatsu GK, Pondrelli M (2007) Geomorphological analysis of Ares Vallis (Mars) by using HRSC (MEX) data: catastrophic floods and glacial morphologies. Mem S A It Suppl 11:119–123Google Scholar
  58. Page DP (2007) Recent low-latitude freeze–thaw on Mars. Icarus 189(1):83–117CrossRefGoogle Scholar
  59. Page DP, Murray JB (2006) Stratigraphic and morphologic evidence for pingo genesis in the Cerberus plains. Icarus 183:46–54CrossRefGoogle Scholar
  60. Peterson JE (1976) Volcanism in the Noachis-Hellas region of Mars. In: Proceedings of the international colloquium of planetary geology, Rome 22–30 Sept. Geol. Romana 15, pp 493–507, citing Peterson JE (1974) A geologic analysis of Martian surface features from Mariner 9 photography as a basis for systematic geologic mapping of Mars: Geology of the Noachis Quadrangle, Mars PhD thesis. Final technical report. NASA-CR-141300Google Scholar
  61. Pondrelli M, Rossi AP, Ori GG, van Gasselt S (2010) Sedimentary volcanoes in the Crommelin South Crater, Mars. In: First international conference on Mars sedimentology and stratigraphy #6025, El PasoGoogle Scholar
  62. Pondrelli M, Rossi AP, Ori GG et al (2011) Mud volcanoes in the geologic record of Mars: the case of Firsoff crater. Earth Planet Sci Lett 304:511–519CrossRefGoogle Scholar
  63. Sánchez-Bayton M, Tréguier E, Herraiz M, Martin P (2012) Identification of geologic structures in the North circumpolar area of Mars. In: Workshop on Mars – connecting planetary scientists in Europe conference, oral presentation, BudapestGoogle Scholar
  64. Skinner JA Jr, Mazzini A (2009) Martian mud volcanism: terrestrial analogs and implications for formational scenarios. Mar Pet Geol 26:1866–1878CrossRefGoogle Scholar
  65. Skinner JA Jr, Tanaka KL (2007) Evidence for and implications of sedimentary diapirism and mud volcanism in the southern Utopia highland–lowland boundary plain, Mars. Icarus 186(1):41–59CrossRefGoogle Scholar
  66. Soare RJ, Burr DM, Wan Bun Tseung JM (2005) Possible pingos and a periglacial landscape in northwest Utopia Planitia. Icarus 174:373–382CrossRefGoogle Scholar
  67. Soare RJ, Osinski GR, Roehm CL (2008) Thermokarst lakes and ponds on Mars in the very recent (late Amazonian) past. Earth Planet Sci Lett 272(1–2):382–393CrossRefGoogle Scholar
  68. Soare RJ, Costard F, Pearce GD, Séjourné A (2012) A re-interpretation of the recent stratigraphical history of Utopia Planitia, Mars: Implications for late-Amazonian periglacial and ice-rich terrain. Planetary and Space Science 60(1):131–139Google Scholar
  69. Socki RA, Sun T, Niles PB, Harvey RP, Bish DL, Tonui E (2012) Antarctic mirabilite mounds as Mars analogs: the Lewis Cliffs ice tongue revisited. 43rd Lunar Planet Sci Conf, abstract #2718, HoustonGoogle Scholar
  70. Tanaka KL (1997) Sedimentary history and mass flow structures of Chryse and Acidalia Planitiae, Mars. J Geophys Res 102(E2):4131–4149. doi:10.1029/96JE02862CrossRefGoogle Scholar
  71. Tanaka KL (2005) Geology and insolation-driven climatic history of Amazonian north polar materials on Mars. Nature 437:991–994CrossRefGoogle Scholar
  72. Ulrich M, Wagner D, Hauber E, de Vera J-P, Schirrmeister L (2012) Habitable periglacial landscapes in martian mid-latitudes. Icarus 219:345–357CrossRefGoogle Scholar
  73. Vaucher J, Baratoux D, Mangold N, Pinet P, Kurita K, Grégoire M (2009) The volcanic history of central Elysium Planitia: implications for martian magmatism. Icarus 204:418–442CrossRefGoogle Scholar
  74. Warner NH, Farmer JD (2008) The origin of conical mounds at the mouth of Chasma Boreale. J Geophys Res 113:E11008. doi:10.1029/2007JE003028CrossRefGoogle Scholar
  75. West M (1974) Martian volcanism: additional observations and evidence for pyroclastic activity. Icarus 21(1):1–11CrossRefGoogle Scholar
  76. Woodward-Lynas C, Guigné JY (2003) Ice keel scour marks on Mars: evidence for floating and grounding ice floes in Kasei Valles. Oceanography 16(4):90–97CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Planetary Science Research GroupEötvös Loránd University, Institute of Geography and Earth SciencesBudapestHungary