Wrinkle Ridge

  • Jarmo Korteniemi
  • Lisa S. Walsh
  • Scott S. Hughes
Living reference work entry
DOI: https://doi.org/10.1007/978-1-4614-9213-9_572-1

Definition

Asymmetrical ridge, typically composed of a broad linear rise and complex crenulations, which occur on a broad, low-relief arch (Watters 1988; Schultz 2000).

Synonyms

Description

Linear arc-shaped or sinuous topographic highs, preferentially found on lowland/plains areas (Golombek et al. 2001), occurring in quasi-regular or periodic spacing (Watters 1991) often in en echelon overlapping sets. They are often bifurcating or anastomosing (Lucchitta and Klockenbrink 1979), braid, and rejoin along strike (Plescia and Golombek 1986). They have asymmetrical profiles (one side having a steeper slope than the other).

Morphometry

Wrinkle ridges are 10s–100s of m high (highest on Mercury), up to 100s of km long, and few to 10s of km wide, displaying 10s of km spacing.

Mercury(in the northern smooth plains...

Keywords

Weak Layer Thermal Subsidence Mare Basalt Lunar Maria Wrinkle Ridge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access

References

  1. Allemand P, Thomas PG (1995) Localization of Martian ridges by impact craters: mechanical and chronological implications. J Geophys Res 100:3251–3262CrossRefGoogle Scholar
  2. Beer W, Mädler JH (1837) Der Mond nach seinen kosmischen und individuellen Verhältnissen oder Allgemeine vergleichende Selenographie. Simon Schropp, BerlinGoogle Scholar
  3. Bilotti F, Suppe J (1999) The global distribution of wrinkle ridges on Venus. Icarus 139:137–157CrossRefGoogle Scholar
  4. Byrne PK, Celâl Şengör AM, Klimczak C, Solomon SC, Watters TR, Hauck SA II (2014) Mercury’s global contraction much greater than earlier estimates. Nat Geosci. doi:10.1038/ngeo2097Google Scholar
  5. Chicarro AF, Schultz PH, Masson P (1985) Global and regional ridge patterns on Mars. Icarus 63:153–174CrossRefGoogle Scholar
  6. Elger TG (1895) The Moon – a full description and map of its principal physical features. George Philip & Son, LondonGoogle Scholar
  7. Golombek MP, Anderson FS, Zuber MT (2001) Martian wrinkle ridge topography: evidence from subsurface faults from MOLA. J Geophys Res 106(E10):23,811–23,821CrossRefGoogle Scholar
  8. Gregg TKP, de Silva S (2009) Tyrrhena Patera and Hesperia Planum, Mars: new insights (and old interpretations) from high-resolution imagery. 40th Lunar Planet Sci Conf, abstract #1700, HoustonGoogle Scholar
  9. Head JW III, Kreslavsky MA, Pratt S (2002) Northern lowlands of Mars: evidence for widespread volcanic flooding and tectonic deformation in the Hesperian Period. J Geophys Res 107(E1):5004. doi:10.1029/2000JE001445CrossRefGoogle Scholar
  10. Kreslavsky MA, Basilevsky AT (1998) Morphometry of wrinkle ridges on Venus: comparison with other planets. J Geophys Res 103:11103–11112CrossRefGoogle Scholar
  11. Kuiper GP (1954) On the origin of the lunar surface features. Proc Natl Acad Sci 40:1096–1112CrossRefGoogle Scholar
  12. Lucchitta BK (1976) Mare ridges and related highland scarps – result of vertical tectonism. Lunar Planet Sci 7(3):2761–2782Google Scholar
  13. Lucchitta BK, Klockenbrink JL (1979) Ridges and scarps in the equatorial belt of Mars. Lunar Planet Sci Conf X:750–752Google Scholar
  14. Mangold N, Allemand P, Thomas PG (1998) Wrinkle ridges of Mars: structural analysis and evidence for shallow deformation controlled by ice-rich decollements. Planet Space Sci 46:345–356CrossRefGoogle Scholar
  15. Mangold N, Allemand P, Thomas PG, Vidal G (2000) Chronology of compressional deformation on Mars: evidence for a single and global origin. Planet Space Sci 48(12–14):1201–1211CrossRefGoogle Scholar
  16. Masursky H, Colton GW, El-Baz F (eds) (1978) Apollo over the Moon: a view from orbit. NASA scientific and technical information office SP-362. Washington, DC http://www.history.nasa.gov/SP-362/contents.htm
  17. Mège D, Ernst RE (2001) Contractional effects of mantle plumes on Earth, Mars, and Venus. Geol Soc Am Special Paper 352:103–140Google Scholar
  18. Mueller K, Golombek M (2004) Compressional structures on Mars. Annu Rev Earth Planet Sci 32:435–464. doi:10.1146/annurev.earth.32.101802.120553CrossRefGoogle Scholar
  19. Nahm AL, Schultz RA (2011) Magnitude of global contraction on Mars from analysis of surface faults: implications for Martian thermal history. Icarus 211:389–400CrossRefGoogle Scholar
  20. Plescia JB, Golombek MP (1986) Origin of planetary wrinkle ridges based on the study of terrestrial analogs. Geol Soc Am Bull 97(11):1289–1299CrossRefGoogle Scholar
  21. Schröter JH (1791) Selenotopographische Fragmente. CG Fleckeinsen, LilenthalGoogle Scholar
  22. Schultz RA (2000) Localization of bedding plane slip and backthrust faults above blind thrust faults: keys to wrinkle ridge structure. J Geophys Res 105:12,035–12,052CrossRefGoogle Scholar
  23. Strom RG (1972) Lunar mare ridges, rings and volcanic ring complexes. In: Runcorn SK, Urey HC (eds) The Moon, vol 47, Symposium International Astronomical Union. D Reidel, Dordrecht, pp 187–215CrossRefGoogle Scholar
  24. Thomson BJ, Head JW III (2001) Utopia Basin, Mars: characterization of topography and morphology and assessment of the origin and evolution of basin internal structure. J Geophys Res 106:23,209–23,230. doi:10.1029/2000JE001355CrossRefGoogle Scholar
  25. Walsh LS, Watters TR, Banks ME, Solomon SC (2013) Wrinkle ridges on Mercury and the Moon: a morphometric comparison of length–relief relations with implications for tectonic evolution. 44th Lunar Planet Sci Conf, abstract #2937, HoustonGoogle Scholar
  26. Watters TR (1988) Wrinkle ridge assemblages on the terrestrial planets. J Geophys Res 93(B9):10236–10254. doi:10.1029/JB093iB09p10236CrossRefGoogle Scholar
  27. Watters TR (1991) Origin of periodically spaced wrinkle ridges on the Tharsis plateau of Mars. J Geophys Res 96(E1):15,599–15,616. doi:10.1029/91JE01402CrossRefGoogle Scholar
  28. Watters TR (1993) Compressional tectonism on Mars. J Geophys Res 98(E9):17,049–17,060. doi:10.1029/93JE01138CrossRefGoogle Scholar
  29. Watters T, Johnston C (2010) Lunar tectonics. In: Watters TR, Schultz RA (eds) Planetary tectonic. Cambridge University Press, New York, pp 121–182Google Scholar
  30. Watters TR, Nimmo F (2010) The tectonics of Mercury. In: Watters TR, Schultz RA (eds) Planetary tectonics. Cambridge University Press, New York, pp 15–80Google Scholar
  31. Watters TR, Solomon SC, Robinson MS, Head JW, André SL, Hauck SA II, Murchie SL (2009) The tectonics of Mercury: the view after MESSENGER’s first flyby. Earth Planet Sci Lett 285:283–296CrossRefGoogle Scholar
  32. Watters TR, Robinson MS, Beyer RA, Banks ME et al (2010) Evidence of recent thrust faulting on the moon revealed by the Lunar reconnaissance orbiter camera. Science 329(5994):936–940. doi:10.1126/science.1189590CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Jarmo Korteniemi
    • 1
  • Lisa S. Walsh
    • 2
  • Scott S. Hughes
    • 3
  1. 1.Earth and Space Physics, Department of PhysicsUniversity of OuluOuluFinland
  2. 2.Center for Earth and Planetary Studies, National Air and Space Museum, Smithsonian InstitutionWashingtonUSA
  3. 3.Department of GeosciencesIdaho State UniversityPocatelloUSA