Canyon

  • Leslie F. BleamasterIII
  • Martin P. A. Jackson
Living reference work entry
DOI: https://doi.org/10.1007/978-1-4614-9213-9_53-1

Definition

Deep, steep-sided, elongated depression.

Synonyms

Description

The terms chasma (chasmata, plural) and canyon are used for several different types of relatively deep, narrow depressions on planetary surfaces, including channels interpreted as formed by fluvial incision and troughs formed by tectonic faulting. The terms chasma and canyon in many cases are used interchangeably.

Formation

Canyons may form by several mechanisms that include the following:
  1. (1)

    Fluvial erosion (valley network, channel, valley terrace, slot canyons [extremely narrow and deep bedrock channels])

     
  2. (2)

    Erosion by turbidity currents (submarine fan)

     
  3. (3)

    Aeolian erosion (yardang, blowout dune and hollow)

     
  4. (4)

    Tectonic faulting/rifting (graben)

     
  5. (5)

    Subduction

     
  6. (6)

    Collapse due to, for example, karstic or thermokarstic processes (karst, thermokarst landforms)

     

Prominent Examples

Echus Chasma (Mangold et al. 2008), Melas Chasma (Quantin et al. 2005), Ganges Chasma (Christensen et al. 2003...

Keywords

Continental Slope Turbidity Current Grand Canyon Fluvial Erosion Fluvial Incision 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.

References

  1. Bamber JL, Siegert MJ, Griggs JA, Marshall SJ, Spada G (2013) Paleofluvial mega-canyon beneath the central Greenland ice sheet. Science 341(6149):997–999CrossRefGoogle Scholar
  2. Bishop JL, Parente M, Weitz CM, Noe D, EZ, Roach LH, Murchie SL, McGuire PC, McKeown NK, Rossi CM, Brown AJ, Calvin WM, Milliken R, Mustard JF (2009) Mineralogy of Juventae Chasma: sulfates in the light-toned mounds, mafic minerals in the bedrock, and hydrated silica and hydroxylated ferric sulfate on the plateau. J Geophys Res 114, CiteID E00D09Google Scholar
  3. Bleamaster LF III, Hansen VL (2004) Effects of crustal heterogeneity on the morphology of chasmata, Venus. J Geophys Res 109:E02004. doi:10.1029/2003JE002193Google Scholar
  4. Brown CD, Grimm RE (1995) Tectonics of Artemis Chasma: a Venusian “plate” boundary. Icarus 117:219–249CrossRefGoogle Scholar
  5. Burr DM (2010) Palaeoflood-generating mechanisms on Earth, Mars, and Titan. Global Planet Change 70:5–13CrossRefGoogle Scholar
  6. Campbell DB, Head JW, Harmon JK, Hine AA (1984) Venus – volcanism and rift formation in Beta Regio. Science 226:167–170CrossRefGoogle Scholar
  7. Christensen PR, Bandfield JL, Bell JF, Gorelick N, Hamilton VE, Ivanov A, Jakosky BM, Kieffer HH, Lane MD, Malin MC, McConnochie T, McEwen AS, McSween HY, Mehall GL, Moersch JE, Nealson KH, Rice JW, Richardson MI, Ruff SW, Smith MD, Titus TN, Wyatt MB (2003) Morphology and composition of the surface of Mars: Mars Odyssey THEMIS results. Science 300:2056–2061CrossRefGoogle Scholar
  8. Cronin BT, Akhmetzhanov AM, Mazzini A, Akhmanov G, Ivanov M, Kenyon NH, TTR-10 Shipboard Scientists (2005) Morphology, evolution and fill: implications for sand and mud distribution in filling deep-water canyons and slope channel complexes. Sediment Geol 179:71–97CrossRefGoogle Scholar
  9. Giese B, Wagner R, Neukum G, Helfenstein P, Thomas PC (2007) Tethys: lithospheric thickness and heat flux from flexurally supported topography at Ithaca Chasma. Geophys Res Lett 34, CiteID L21203Google Scholar
  10. Grimm RE, Phillips RJ (1992) Anatomy of a Venusian hot spot: geology, gravity, and mantle dynamics of Eistla Regio. J Geophys Res 97:16,035–16,054CrossRefGoogle Scholar
  11. Hamilton VE, Stofan ER (1996) The geomorphology and evolution of Hecate Chasma, Venus. Icarus 121:171–194CrossRefGoogle Scholar
  12. Hansen VL, Olive A (2010) Artemis, Venus: the largest tectonomagmatic feature in the solar system? Geology 38:467–470CrossRefGoogle Scholar
  13. Hansen VL, Phillips RJ (1993) Tectonics and volcanism of eastern Aphrodite Terra, Venus: no subduction, no spreading. Science 260:526–530CrossRefGoogle Scholar
  14. Harrison KP, Chapman MG (2008) Evidence for ponding and catastrophic floods in central Valles Marineris, Mars. Icarus 198:351–364CrossRefGoogle Scholar
  15. Head JW, Crumpler LS, Aubele JC, Guest JE, Saunders RS (1992) Venus volcanism classification of volcanic features and structures, associations, and global distribution from Magellan data. J Geophys Res 97:13,153–13,197CrossRefGoogle Scholar
  16. Herrick RR (1994) Resurfacing history of Venus. Geology 22:703–706CrossRefGoogle Scholar
  17. Holt JW, Fishbaugh KE, Byrne S, Christian S, Tanaka K, Russell PS, Herkenhoff KE, Safaeinili A, Putzig NE, Phillips RJ (2010) The construction of Chasma Boreale on Mars. Nature 465:446–449CrossRefGoogle Scholar
  18. Jackson MPA, Adams JB, Dooley TP, Gillespie AR, Montgomery DR (2011) Modeling the collapse of Hebes Chasma, Valles Marineris, Mars. Geol Soc Am Bull 123:1596–1627CrossRefGoogle Scholar
  19. Kiefer WS, Swafford LC (2006) Topographic analysis of Devana Chasma, Venus: implications for rift system segmentation and propagation. J Struct Geol 28:2144–2155CrossRefGoogle Scholar
  20. Langhans MH, Jaumann R, Stephan K et al (2012) Titan’s fluvial valleys: morphology, distribution, and spectral properties. Planet Space Sci 60:34–51CrossRefGoogle Scholar
  21. Mangold N, Ansan V, Masson Ph, Quantin C, Neukum G (2008) Geomorphic study of fluvial landforms on the northern Valles Marineris plateau, Mars. J Geophys Res 113(E8), CiteID E08009Google Scholar
  22. Mège D, Masson P (1996) Amounts of crustal stretching in Valles Marineris, Mars. Planet Space Sci 44:749–781CrossRefGoogle Scholar
  23. Phillips RJ, Hansen VL (1998) Geologic evolution of Venus: rises, plains, plumes, and plateaus. Science 279:1492–1497CrossRefGoogle Scholar
  24. Quantin C, Allemand P, Mangold N, Dromart G, Delacourt C (2005) Fluvial and lacustrine activity on layered deposits in Melas Chasma, Valles Marineris, Mars. J Geophys Res 110(E12), CiteID E12S19Google Scholar
  25. Robinson CA, Wood JA (1993) Recent volcanic activity on Venus: evidence from radiothermal emmisivity measurements. Icarus 102:26–39CrossRefGoogle Scholar
  26. Sandwell DT, Schubert G (1992) Evidence for retrograde lithospheric subduction on Venus. Science 257:766–770CrossRefGoogle Scholar
  27. Schenk PM (1991) Fluid volcanism on Miranda and Ariel – flow morphology and composition. J Geophys Res 96:1887–1906CrossRefGoogle Scholar
  28. Senske DA, Head JW, Fisher CP, Decharon A, Frank SL, Keddie ST, Roberts KM, Campbell DB, Hine AA, Stofan ER (1991) Geology and tectonics of the THEMIS Regio-Lavinia Planitia-Alpha Regio-Lada Terra area, Venus – results from Arecibo image data. Earth Moon Planets 55:97–161CrossRefGoogle Scholar
  29. Stofan ER, Head JW, Campbell DB, Zisk SH, Bogomolov AF, Rzhiga ON, Basilevsky AT, Armand N (1989) Geology of a rift zone on Venus: Beta Regio and Devana Chasma. Geol Soc Am Bull 101:143–156CrossRefGoogle Scholar
  30. Tanaka KL, Rodriguez J, Alexis P, Skinner JA, Bourke MC, Fortezzo CM, Herkenhoff KE, Kolb EJ, Okubo CH (2008) North polar region of Mars: advances in stratigraphy, structure, and erosional modification. Icarus 196(2):318–358CrossRefGoogle Scholar
  31. Wheeler AJ, Kenyon NH, Ivanov MK, Beyer A, Cronin BT, McDonnell A, Schenke HW, Akhmetzhanov AM, Satur N, Zaragosi S (2003) Canyon heads and channel architecture of the Gollum Channel, Porcupine Seabight. In: Mienert J, Weaver P (eds) European margin sediment dynamics. Springer, Berlin, pp 183–186CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Leslie F. BleamasterIII
    • 1
  • Martin P. A. Jackson
    • 2
  1. 1.Center for the Sciences and InnovationTrinity UniversitySan AntonioUSA
  2. 2.Bureau of Economic Geology, Jackson School of GeosciencesThe University of Texas at AustinAustinUSA