Skip to main content

Normal Fault

  • Living reference work entry
  • First Online:
Encyclopedia of Planetary Landforms

Definition

Inclined, primarily high-angle dip-slip fault where the hanging wall has moved down relative to footwall, driven by crustal extension resulting from stresses in which blocks of rock are pulled apart. The maximum compressive stress, σ 1, is vertical; the minimum compressive stress, σ 2, is horizontal and parallel to the fault strike; and the intermediate compressive stress, σ 3, is oriented perpendicular to the fault strike (Fig. 1). Younger rocks are superposed over older rocks.

Fig. 1
figure 1

Block diagram showing an emergent normal fault, with the orientation of the principle stresses, σ 1, σ 2, and σ 3, noted. The hanging wall (right) moves down relative to the footwall (left) (Modified after Fossen 2010).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Anderson EM (1951) The dynamics of faulting. Oliver and Boyd, Edinburgh

    Google Scholar 

  • Barr D (1987) Structural stratigraphic models for extensional basins of half-graben type. J Struct Geol 9:491–500

    Article  Google Scholar 

  • Beach A, Trayner P (1991) The geometry of normal faults in a sector of the offshore Nile Delta, Egypt. In: Roberts AM, Yielding G, Freeman B (eds) The geometry of normal faults. Geological Society of London, London, pp 173–182, Special Publication, 56

    Google Scholar 

  • Billings MP (1942) Structural geology. Prentice-Hall, New York

    Google Scholar 

  • Collins GC, McKinnon WB, Moore JM, Nimmo F, Pappalardo RT, Prockter LM, Schenk PM (2010) Tectonics of the outer planet satellites. In: Watters TR, Schultz RA (eds) Planetary tectonics. Cambridge University Press, Cambridge, pp 264–350

    Google Scholar 

  • Davison I (1986) Listric normal fault profiles: calculation using bed-length balance and fault displacement. J Struct Geol 8:209–210

    Article  Google Scholar 

  • Dennis JG (ed) (1967) International tectonic dictionary. Memoir 7. American Association of Petroleum Geologists

    Google Scholar 

  • Fossen H (2010) Structural geology. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Geikie A (1882) Text-book of geology. Macmillan, London

    Google Scholar 

  • Ghail RC, Egan SS (2000) A numerical rift model of Diana Chasma. Lunar Planet Sci XXXI:1584

    Google Scholar 

  • Golombek MP, Phillips RJ (2010) Mars tectonics. In: Watters TR, Schultz RA (eds) Planetary tectonics. Cambridge University Press, Cambridge, pp 183–232

    Google Scholar 

  • Gregory JW (1894) Contributions to the physical geography of British East Africa. Geog J 4:290–315, 408–424, 505–514

    Article  Google Scholar 

  • Hills ES (1940) Outlines of structural geology. Methuen, London

    Google Scholar 

  • Hobbs BE, Means WD, Williams PF (1976) An outline of structural geology. Wiley, New York

    Google Scholar 

  • Jackson J, McKenzie D (1983) The geometrical evolution of normal fault systems. J Struct Geol 5:471–482

    Article  Google Scholar 

  • Jaeger JC, Cook NGW, Zimmerman RW (2007) Fundamentals of rock mechanics, 4th edn. Blackwell, Oxford

    Google Scholar 

  • Klimczak C, Schultz RA, Nahm AL (2010) Evaluation of the origin hypotheses of Pantheon Fossae, central Caloris basin, Mercury. Icarus 209:262–270. doi:10.1016/j.icarus.2010.04.014

    Article  Google Scholar 

  • Kronberg P, Hauber E, Grott M, Werner SC, Schäfer T, Gwinner K, Giese B, Masson P, Neukum G (2007) Acheron Fossae, Mars: tectonic rifting, volcanism, and implications for lithospheric thickness. J Geophys Res 112, E04005. doi:10.1029/2006JE002780

    Google Scholar 

  • Leith CK (1923) Structural geology. Holt, New York

    Google Scholar 

  • McGill GE, Stofan ER, Smrekar SE (2010) Venus tectonics. In: Watters TR, Schultz RA (eds) Planetary tectonics. Cambridge University Press, Cambridge, pp 81–120

    Google Scholar 

  • Nahm AL, Schultz RA (2013) Rupes Recta and the geologic history of the Mare Nubium region, the Moon: insights from forward mechanical modeling of the “Straight Wall”. In: Platz T, Massironi M, Byrne PK, Hiesinger H (eds) Volcanism and tectonism across the inner solar system. Geological Society of London, London. doi:10.1144/SP401.4, Special Publications, 401

    Google Scholar 

  • Nahm AL, Öhman T, Kring DA (2013) Normal faulting origin for the cordillera and outer rook rings of Orientale Basin, the moon. J Geophys Res Planets 118:190–205. doi:10.1002/jgre.20045

    Article  Google Scholar 

  • Nelson RA, Patton TL, Morley CK (1992) Rift segment interaction and its relation to hydrocarbon exploration in rift systems. Am Assoc Petrol Geol Bull 76:1153–1169

    Google Scholar 

  • Okubo CH, Schultz RA (2005) Evidence of normal faulting and dike intrusion at Valles Marineris from pit crater topography. 37th Lunar Planet Sci, abstract #1008, Houston

    Google Scholar 

  • Peacock DCP (1991) Displacement and segment linkage in strike-slip fault zones. J Struct Geol 13:1025–1035

    Article  Google Scholar 

  • Peacock DCP, Knipe RJ, Sanderson DJ (2000) Glossary of normal faults. J Struct Geol 22:291–305

    Article  Google Scholar 

  • Pierce WG (1963) Reef creek detachment fault, northwestern Wyoming. Geol Soc Am Bull 74:1225–1236

    Article  Google Scholar 

  • Reid HF, Davis WM, Lawson AC, Ransome FL (1913) Report on the committee on the nomenclature of faults. Geol Soc Am Bull 24:163–186

    Google Scholar 

  • Rubin AM, Pollard DD (1988) Dike-induced faulting in rift zones of Iceland and Afar. Geology 16:413–417

    Article  Google Scholar 

  • Scholz CH, Cowie PA (1990) Determination of total strain from faulting using slip measurements. Nature 346:837–839

    Article  Google Scholar 

  • Schultz RA, Lin J (2001) Three-dimensional normal faulting models of Valles Marineris, Mars, and geodynamic implications. J Geophys Res 106:16549–16566

    Article  Google Scholar 

  • Schultz RA, Okubo CH, Goudy CL, Wilkins SJ (2004) Igneous dikes on Mars as revealed by MOLA topography. Geology 32:889–892

    Article  Google Scholar 

  • Schultz RA, Soliva R, Okubo CH, Mège D (2010a) Fault populations. In: Watters TR, Schultz RA (eds) Planetary tectonics. Cambridge University Press, Cambridge, pp 457–510

    Google Scholar 

  • Schultz RA, Hauber E, Kattenhorn SA, Okubo CH, Watters TR (2010b) Interpretation and analysis of planetary structures. J Struct Geol 32:855–875

    Article  Google Scholar 

  • Smith DE et al (2010) Initial observations from the Lunar Orbiter Laser Altimeter (LOLA). Geophys Res Lett 37, L18204. doi:10.1029/2010GL043751

    Google Scholar 

  • Suess E (1909) The face of the Earth, vol 4. Clarendon, Oxford (Authorized English Translation)

    Google Scholar 

  • Thomas PC, Prockter LM (2010) Tectonics of small bodies. In: Watters TR, Schultz RA (eds) Planetary tectonics. Cambridge University Press, Cambridge, pp 233–265

    Google Scholar 

  • Watters TR, Johnson CL (2010) Lunar tectonics. In: Watters TR, Schultz RA (eds) Planetary tectonics. Cambridge University Press, Cambridge, pp 121–182

    Google Scholar 

  • Weissel JK, Karner GD (1989) Flexural uplift of rift flanks due to mechanical unloading of the lithosphere during extension. J Geophys Res 94:13919–13950

    Article  Google Scholar 

  • Williams G, Vann I (1987) The geometry of listric normal faults and deformation in their hanging walls. J Struct Geol 9:789–796

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amanda L. Nahm .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Nahm, A.L. (2014). Normal Fault. In: Encyclopedia of Planetary Landforms. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9213-9_519-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9213-9_519-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-9213-9

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics