Skip to main content

Lineament Grid

  • Living reference work entry
  • First Online:
Encyclopedia of Planetary Landforms
  • 55 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Burns JA (1976) Consequences of the tidal slowing of Mercury. Icarus 28:453–458

    Article  Google Scholar 

  • Byrne PK, Celâl Şengör AM, Klimczak C, Solomon SC, Watters TR, Hauck SA II (2014) Mercury’s global contraction much greater than earlier estimates. Nat Geosci. doi:10.1038/ngeo2097

    Google Scholar 

  • Dana JD (1847) Geological results of the earth’s contraction in consequence of cooling. Am J Sci Arts 2nd Ser 3:176–188

    Google Scholar 

  • Dzurisin D (1978) The tectonic and volcanic history of Mercury as inferred from studies of scarps, ridges, troughs, and other lineaments. J Geophys Res 83:4883–4906

    Article  Google Scholar 

  • Fiedler G (1963) Lunar tectonics. Q J Geol Soc Lond 119:65–94

    Article  Google Scholar 

  • Greenberg R (2005) Europa, the ocean Moon. Springer Praxis, Chichester

    Google Scholar 

  • Havre N (1931) Le Terre est un Astre Pulsatile. Béranger, Paris/Liege

    Google Scholar 

  • Kite ES, Matsuyama I, Manga M, Perron JT, Mitrovica JX (2009) True Polar Wander driven by late-stage volcanism and the distribution of paleopolar deposits on Mars. Earth Planet Sci Lett 280:254–267

    Article  Google Scholar 

  • Matsuyama I, Nimmo F (2008) Tectonic patterns on reoriented and despun planetary bodies. Icarus 195:459–473

    Article  Google Scholar 

  • Melosh HJ (1977) Global tectonics of a Despun planet. Icarus 31:221–243

    Article  Google Scholar 

  • Melosh HJ, Dzurisin D (1978) Mercurian global tectonics: a consequence of tidal despinning? Icarus 35:227–236

    Article  Google Scholar 

  • Melosh HJ, McKinnon WB (1988) The tectonics of Mercury. In: Mercury (A89-43751 19–91). University of Arizona Press, Tucson, pp 374–400

    Google Scholar 

  • Mohit PS, Greenhagen BT, McKinnon WB (2012) Polar wander on ganymede: a possible solution to the apex-antapex cratering conundrum.Workshop on the early solar system impact bombardment II, abstract #4043, Houston

    Google Scholar 

  • Morgan WJ (1968) Rises, trenches, great faults, and crustal blocks. J Geophys Res 73(6):1959–1982. doi:10.1029/JB073i006p01959

    Article  Google Scholar 

  • Scalera G, Jacob K-H (eds) (2003) Why expanding Earth? – a book in honour of O.C. Hilgenberg/INGV, Rome

    Google Scholar 

  • Schenk P, Matsuyama I, Nimmo F (2008) True polar wander on Europa from global-scale small-circle depressions. Nature 453:368–371

    Article  Google Scholar 

  • Showman AP, Stevenson DJ, Malhotra R (1997) Coupled orbital and thermal evolution of Ganymede. Icarus 129:367–383. doi:10.1006/icar.1997.5778

    Article  Google Scholar 

  • Singer KN, McKinnon WB (2011) Tectonics on Iapetus: despinning, respinning, or something completely different? Icarus 216:198–211

    Article  Google Scholar 

  • Spurr JE (1944) Geology applied to selenology. Science Press, Lancaster

    Google Scholar 

  • Squyres SW (1980) Volume changes in Ganymede and Callisto and the origin of grooved terrain. Geophys Res Lett 7:593–596

    Article  Google Scholar 

  • Strom R (1964) Analysis of lunar lineaments. I. Tectonic maps of the Moon. Commun Lunar Planet Lab 2(39):205–206

    Google Scholar 

  • Thomas PG (1997) Are there other tectonics than tidal despinning, global contraction and Caloris related events on Mercury? A review of questions and problems. Planet Space Sci 45(1):3–13

    Article  Google Scholar 

  • Thomas PG, Masson P, Fleitout L (1988) Tectonic history of Mercury. In: Vilas F, Chapman CR, Matthews MS (eds) Mercury. University of Arizona Press, Tucson

    Google Scholar 

  • Ussov MA (1937) Compression and expansion in the history of the earth. Paper presented at the 17th session of the international geological congress, Leningrad

    Google Scholar 

  • van Diggelen J (1966) The linear network of lunar surface features. Bull Astron Inst Neth 18:311–322

    Google Scholar 

  • Vening Meinesz FA (1947) Shear patterns of the earth’s crust. Geol Soc Am Abstr Progr 28:1–61

    Google Scholar 

  • Vilas F, Chapman CR, Matthews MS (1988) Mercury. University of Arizona Press, Tucson

    Google Scholar 

  • Wells RA (1969) An introduction to the Martian Grid system. Geophys J Roy Astron Soc 17:209–224. doi:10.1111/j.1365-246X.1969.tb02322.x

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erzsébet Illés-Almár .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Illés-Almár, E. (2014). Lineament Grid. In: Encyclopedia of Planetary Landforms. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9213-9_482-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9213-9_482-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-9213-9

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics