Lineament Grid

  • Erzsébet Illés-Almár
Living reference work entry


Global pattern of preferentially oriented lineaments on the surface of a planetary body. Lineaments whose orientation is influenced locally by another surface feature (e.g., an impact basin) or was created by exogenic processes are not considered to be parts of the lineament grid.


Regional Terms

Lunar grid (Moon), lineament grid (Mercury) (Dzurisin 1978), Mercurian grid (Thomas et al. 1988).


Linear, arcuate, sinuous, or irregular scarps (steep, cliff-like slopes of considerable lateral extent separating terrains lying at different levels), ridges (elongated positive relief features), or troughs (elongated negative relief features).


A global (or regional) lineament grid pattern can be the result of global (or regional) strain in the crust. Global strain can arise from the following events:
  1. (1)

    Change in rotation rate (Vening Meinesz 1947), for example, despinning caused by tidal dissipation (tidal...


Lineament Pattern Planetary Body Crater Wall Lineament Grid Impact Basin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. Burns JA (1976) Consequences of the tidal slowing of Mercury. Icarus 28:453–458CrossRefGoogle Scholar
  2. Byrne PK, Celâl Şengör AM, Klimczak C, Solomon SC, Watters TR, Hauck SA II (2014) Mercury’s global contraction much greater than earlier estimates. Nat Geosci. doi:10.1038/ngeo2097Google Scholar
  3. Dana JD (1847) Geological results of the earth’s contraction in consequence of cooling. Am J Sci Arts 2nd Ser 3:176–188Google Scholar
  4. Dzurisin D (1978) The tectonic and volcanic history of Mercury as inferred from studies of scarps, ridges, troughs, and other lineaments. J Geophys Res 83:4883–4906CrossRefGoogle Scholar
  5. Fiedler G (1963) Lunar tectonics. Q J Geol Soc Lond 119:65–94CrossRefGoogle Scholar
  6. Greenberg R (2005) Europa, the ocean Moon. Springer Praxis, ChichesterGoogle Scholar
  7. Havre N (1931) Le Terre est un Astre Pulsatile. Béranger, Paris/LiegeGoogle Scholar
  8. Kite ES, Matsuyama I, Manga M, Perron JT, Mitrovica JX (2009) True Polar Wander driven by late-stage volcanism and the distribution of paleopolar deposits on Mars. Earth Planet Sci Lett 280:254–267CrossRefGoogle Scholar
  9. Matsuyama I, Nimmo F (2008) Tectonic patterns on reoriented and despun planetary bodies. Icarus 195:459–473CrossRefGoogle Scholar
  10. Melosh HJ (1977) Global tectonics of a Despun planet. Icarus 31:221–243CrossRefGoogle Scholar
  11. Melosh HJ, Dzurisin D (1978) Mercurian global tectonics: a consequence of tidal despinning? Icarus 35:227–236CrossRefGoogle Scholar
  12. Melosh HJ, McKinnon WB (1988) The tectonics of Mercury. In: Mercury (A89-43751 19–91). University of Arizona Press, Tucson, pp 374–400Google Scholar
  13. Mohit PS, Greenhagen BT, McKinnon WB (2012) Polar wander on ganymede: a possible solution to the apex-antapex cratering conundrum.Workshop on the early solar system impact bombardment II, abstract #4043, HoustonGoogle Scholar
  14. Morgan WJ (1968) Rises, trenches, great faults, and crustal blocks. J Geophys Res 73(6):1959–1982. doi:10.1029/JB073i006p01959CrossRefGoogle Scholar
  15. Scalera G, Jacob K-H (eds) (2003) Why expanding Earth? – a book in honour of O.C. Hilgenberg/INGV, RomeGoogle Scholar
  16. Schenk P, Matsuyama I, Nimmo F (2008) True polar wander on Europa from global-scale small-circle depressions. Nature 453:368–371CrossRefGoogle Scholar
  17. Showman AP, Stevenson DJ, Malhotra R (1997) Coupled orbital and thermal evolution of Ganymede. Icarus 129:367–383. doi:10.1006/icar.1997.5778CrossRefGoogle Scholar
  18. Singer KN, McKinnon WB (2011) Tectonics on Iapetus: despinning, respinning, or something completely different? Icarus 216:198–211CrossRefGoogle Scholar
  19. Spurr JE (1944) Geology applied to selenology. Science Press, LancasterGoogle Scholar
  20. Squyres SW (1980) Volume changes in Ganymede and Callisto and the origin of grooved terrain. Geophys Res Lett 7:593–596CrossRefGoogle Scholar
  21. Strom R (1964) Analysis of lunar lineaments. I. Tectonic maps of the Moon. Commun Lunar Planet Lab 2(39):205–206Google Scholar
  22. Thomas PG (1997) Are there other tectonics than tidal despinning, global contraction and Caloris related events on Mercury? A review of questions and problems. Planet Space Sci 45(1):3–13CrossRefGoogle Scholar
  23. Thomas PG, Masson P, Fleitout L (1988) Tectonic history of Mercury. In: Vilas F, Chapman CR, Matthews MS (eds) Mercury. University of Arizona Press, TucsonGoogle Scholar
  24. Ussov MA (1937) Compression and expansion in the history of the earth. Paper presented at the 17th session of the international geological congress, LeningradGoogle Scholar
  25. van Diggelen J (1966) The linear network of lunar surface features. Bull Astron Inst Neth 18:311–322Google Scholar
  26. Vening Meinesz FA (1947) Shear patterns of the earth’s crust. Geol Soc Am Abstr Progr 28:1–61Google Scholar
  27. Vilas F, Chapman CR, Matthews MS (1988) Mercury. University of Arizona Press, TucsonGoogle Scholar
  28. Wells RA (1969) An introduction to the Martian Grid system. Geophys J Roy Astron Soc 17:209–224. doi:10.1111/j.1365-246X.1969.tb02322.xCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Konkoly Observatory of the Hungarian Academy of SciencesBudapestHungary