Skip to main content

Glacier

  • Living reference work entry
  • First Online:
Encyclopedia of Planetary Landforms

Definition

Accumulated ice mass that slowly creeps on the surface.

Description

On Earth a glacier is “a perennial mass of ice, and possibly firn and snow, originating on the land surface by the recrystallization of snow or other forms of solid precipitation and showing evidence of past or present flow” (Cogley et al. 2011).

Processes and Control

A glacier erodes the underlying surface by abrasion, scouring, plucking, ice thrusting, and spalling. Erosion efficiency is dependent on conditions at the glacier base, including ice velocity and pressure, thermal conditions, amount of water, and underlying surface characteristics. Eroded materials are mostly incorporated in the glacier and deposited later as till, glacial erratics or dropstones, or outwash sediments.

Subtypes

For a detailed classification system, refer to Rau et al. (2005).

Subtypes Based on Relief and Extent

  1. (1)

    Large plateau-like glaciers:

    1. (1.1)

      Ice sheet (also called continental glacier): ice covering that obscures the...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ahlmann HW (1935) Contribution to the physics of glaciers. Geogr J 86(2):97–113

    Article  Google Scholar 

  • Atkins CB (2013) Geomorphological evidence of cold-based glacier activity in South Victoria Land, Antarctica. Geol Soc London Spec Publ 381:299–318. doi:10.1144/SP381.18

    Article  Google Scholar 

  • Bardel P, Fountain AG, Hall DK, Kwok R (2002) Synthetic aperture radar detection of the snowline on Commonwealth and Howard Glaciers, Taylor Valley, Antarctica. Ann Glaciol 34:177–183

    Article  Google Scholar 

  • Cogley JG, Hock R, Rasmussen LA et al (2011) Glossary of glacier mass balance and related terms, IHP-VII technical documents in hydrology no. 86, IACS contribution no. 2, UNESCO-IHP, Paris

    Google Scholar 

  • de Wildt MSR (2002) Satellite-retrieval and modeling of glacier mass balance. Dissertation, Universiteit Utrecht

    Google Scholar 

  • Fretwell P et al (2013) Bedmap2: improved ice bed, surface and thickness datasets for Antarctica. Cryosphere 7:375–393

    Article  Google Scholar 

  • Gachev E (2009) Indicators for modern and recent climate change in the highest mountain areas of Bulgaria. Landform Anal 10:33–38

    Google Scholar 

  • Greve R (2006) Fluid dynamics of planetary ices. GAMM-Mitteilungen, vol 29(1). Mechanics of ice in geophysical and astrophysical context, pp 26–51. http://arxiv.org/abs/0903.3773

  • Head JW III, Pratt S (2001) Extensive Hesperian-aged south polar ice sheet on Mars: evidence for massive melting and retreat, and lateral flow and ponding of meltwater. J Geophys Res 106:12275–12299

    Article  Google Scholar 

  • Head JW, Mustard JF, Kreslavsky MA, Milliken RE, Marchant DR (2003) Recent ice ages on Mars. Nature 426:797–802

    Article  Google Scholar 

  • Holt J et al (2008) Radar sounding evidence for buried glaciers in the southern mid-latitudes of Mars. Science 322:1235–1238

    Article  Google Scholar 

  • Irvine-Fynn TDL, Hodson AJ, Moorman BJ, Vatne G, Hubbard AL (2011) Polythermal glacier hydrology: a review. Rev Geophys 49, RG4002. doi:10.1029/2010RG000350

    Article  Google Scholar 

  • Jackson JA (ed) (1997) Glossary of geology, 4th edn. American Geological Institute, Alexandria

    Google Scholar 

  • Langevin Y, Poulet F, Bibring J-P, Schmitt B, Douté S, Gondet B (2005) Summer evolution of the north polar cap of Mars as observed by OMEGA/Mars Express. Science 307:1581–1584

    Article  Google Scholar 

  • Lliboutry L (1971) Permeability, brine content and temperature of temperate ice. J Glaciol 10(58):15–29

    Google Scholar 

  • Lodders K, Fegley B Jr (1998) The planetary scientist’s companion. Oxford University Press, New York

    Google Scholar 

  • Madeleine J-B, Forget F, Head JW, Levrard B, Montmessin F, Millour E (2009) Amazonian northern mid-latitude glaciation on Mars: a proposed climate scenario. Icarus 203:390–405

    Article  Google Scholar 

  • Nagle G, Witherick M (2002) Cold environments: processes and outcomes. Nelson Thornes Ltd, Cheltenham

    Google Scholar 

  • Plaut JJ et al (2007) Subsurface radar sounding of the south polar layered deposits of Mars. Science 316:92–95

    Article  Google Scholar 

  • Rau F, Mauz F, Vogt S, Khalsa SJS, Raup B (2005) Illustrated GLIMS glacier classification manual. GLIMS regional center ‘Antarctic Peninsula’. Institut für Physische Geographie, Freiburg

    Google Scholar 

  • Robshaw LE, Kargel JS, Lopes RMC, Mitchell KL, Wilson L, Cassini RADAR Team (2008) Evidence of possible glacial features on titan. LPSC 39, LPI contribution no. 1391, 2087 (abstract)

    Google Scholar 

  • Schon SC, Head JW, Milliken RE (2009) A recent ice age on Mars: evidence for climate oscillations from regional layering in mid-latitude mantling deposits. Geophys Res Lett 36, L15202. doi:10.1029/2009GLO38554

    Google Scholar 

  • Selvans MM, Plaut JJ, Aharonson O, Safaeinii A (2010) Internal structure of Planum Boreum, from Mars advanced radar for subsurface and ionospheric sounding data. J Geophys Res 115:E9003. doi:10.1029/2009JE003537

    Article  Google Scholar 

  • Smith DE et al (2001) Mars Orbiter Laser Altimeter: experiment summary after the first year of global mapping of Mars. J Geophys Res 106(E10):23689–23722

    Article  Google Scholar 

  • Souness CJ, Hubbard B (2012) Crevasse-like openings as indicators of flow in martian glacier-like forms. 43rd Lunar Planet Sci Conf, abstract #1070, Houston

    Google Scholar 

  • Stokes CR, Clark CD (2001) Palaeo-ice streams. Q Sci Rev 20(13):1437–1457

    Article  Google Scholar 

  • Zemp M, Hoelzle M, Haeberli W (2007) Distributed modelling of the regional climatic equilibrium line altitude of glaciers in the European Alps. Global Planetary Change 56:83–100

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jarmo Korteniemi .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Korteniemi, J., Nagy, B. (2014). Glacier. In: Encyclopedia of Planetary Landforms. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9213-9_472-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9213-9_472-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-9213-9

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics