Skip to main content

Hydrovolcanic Feature

  • 104 Accesses

Definition

Features formed by explosive magma–water or lava–water interaction (often termed phreatomagmatism or hydromagmatism, although only phreatomagmatism is used herein, e.g., rootless cone, maar, tuff cone); nonexplosive magma–water or lava–water interaction (e.g., basaltic ring structures, pillow lavas); magma–ice interaction (termed glaciovolcanism, e.g., tuya, tindar); or rapid vaporization of a hydrothermal system due to interaction of water with hot rock (phreatic activity, e.g., geysers, hydrothermal explosion craters).

Subtypes

Sheridan and Wohletz, 1983 and references therein, Wohletz 2003 and references therein, Hydrovolcanic features are produced by the following processes (Keszthelyi et al. 2010; Burr et al. 2009):

  1. (1)

    Phreatomagmatism refers to the explosive interaction between magma and shallow bodies of water (e.g., lake, shallow sea) or groundwater. Littoral explosions occur when erupted lava flows over saturated sediments or into a body of water.

    ...

Keywords

  • Steam Explosion
  • External Water
  • Pyroclastic Density Current
  • Littoral Cone
  • Juvenile Clast

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  • Brand BD, Semken S, Clarke AB (2009) Eruptive conditions and depositional processes of narbona pass maar volcano, Navajo volcanic field, Navajo nation, New Mexico (USA). Bull Volcanol 71:49–77. doi:10.1007/s00445-008-0209-y

    CrossRef  Google Scholar 

  • Brand BD, Gravely D, Clarke AB, Nemeth K (2014) A combined field and numerical approach to understanding dilute pyroclastic density current dynamics and hazard potential: Auckland Volcanic Field, New Zealand. J Volcanol Geother Res. 276: 215–232

    Google Scholar 

  • Burr DM, Bruno BC, Lanagan PD, Glaze LS, Jaeger WL, Soare RJ, Wan Bun Tseung J-M, Skinner JA Jr, Baloga SM (2009) Mesoscale raised rim depressions (MRRDs) on Earth: a review of the characteristics, processes, and spatial distributions of analogs for Mars. Planet Space Sci 57:579–596

    CrossRef  Google Scholar 

  • Büttner R, Zimanowski B (1998) Physics of thermohydraulic explosions. Phys Rev Lett 57:5726–5792

    Google Scholar 

  • Cas RA, Wright JV (1987) Volcanic successions, modern and ancient: A geological approach to processes, products, and successions. Allen & Unwin

    Google Scholar 

  • Cas RAF, Wright JV (1988) Volcanic successions: modern and ancient. Academic Division of Unwin Hyman

    Google Scholar 

  • Cole PD (1991) Migration direction of sand-wave structures in pyroclastic-surge deposits; implications for depositional processes. Geology (Boulder) 19(11):1108–1111

    CrossRef  Google Scholar 

  • Cole PD, Guest JE, Duncan AM, Pacheco JM (2001) Capelinhos 1957–1958, Faial, Azores: deposits formed by an emergent surtseyan eruption. Bull. Volcanol. 63(2–3), 204–220.

    Google Scholar 

  • Crowe BM, Fisher RV (1973) Sedimentary structures in base-surge deposits with special reference to cross-bedding, Ubehebe Craters, Death Valley, California. GSA Bull 84:663–682

    CrossRef  Google Scholar 

  • Fisher RV, Schmincke H-U (1984) Pyroclastic rocks. Springer, Berlin

    CrossRef  Google Scholar 

  • Hamilton CW, Thordarson T, Fagents SA (2010) Explosive lava–water interactions I: architecture and emplacement chronology of volcanic rootless cone groups in the 1783–1784 Laki lava flow, Iceland. Bull Volcanol 72(4):449–467

    CrossRef  Google Scholar 

  • Houghton BF, Wilson CJN (1989) A vesicularity index for pyroclastic deposits. Bull Volcanol 51(6):451–462

    CrossRef  Google Scholar 

  • Houghton BF, Wilson CJN, Smith IEM (1999) Shallow-seated controls on styles of explosive basaltic volcanism; a case study from New Zealand. J Volcanol Geotherm Res 91(1):97–120

    CrossRef  Google Scholar 

  • Keszthelyi LP, Jaeger WL, Dundas CM, Martínez-Alonso S, McEwen AS, Milazzo MP (2010) Hydrovolcanic features on Mars: preliminary observations from the first Mars year of HiRISE imaging. Icarus 205(1):211–229

    CrossRef  Google Scholar 

  • Kokelaar P (1983) The mechanism of Surtseyan volcanism. J Geol Soc Lond 140(6):939–944

    CrossRef  Google Scholar 

  • Lanz JK, Saric MB (2009) Cone fields in SW Elysium Planitia: hydrothermal venting on Mars? J Geophys Res 114:E02008. doi:10.1029/2008JE003209

    Google Scholar 

  • Lindsay J, Marzocchi W, Jolly G, Constantinescu R, Selva J, Sandri L (2010) Towards real-time eruption forecasting in the Auckland Volcanic Field: application of BET_EF during the New Zealand National Disaster Exercise ‘Ruaumoko’. Bull Volcanol 72:185–204

    CrossRef  Google Scholar 

  • Lorenz V (1986) On the growth of maars and diatremes and its relevance to the formation of tuff rings. Bull Volcanol 48:265–274

    CrossRef  Google Scholar 

  • Mastin LG (2007) The Generation of fine hydromagmatic ash by growth and disintegration of glassy rinds. J Geophys Res 112:1–17

    Google Scholar 

  • Morrissey M, Zimanowski B, Wohletz K, Buettner R (2000) Phreatomagmatic fragmentation. In: Sigurdsson H, Houghton B, McNutt SR, Rymer H, Stix J (eds) Encyclopedia of volcanoes. Academic, London, pp 431–445

    Google Scholar 

  • Sandri L, Jolly G, Lindsay J, Howe T, Marzocchi W (2011) Combining long- and short-term probabilistic volcanic hazard assessment with cost-benefit analysis to support decision making in a volcanic crisis from the Auckland Volcanic Field, New Zealand. Bull Volcanol 74:705–723

    CrossRef  Google Scholar 

  • Self S, Kienle J, Huot JP (1980) Ukinrek Maars, Alaska, II: deposits and formation of the 1977 craters. J Volcanol Geotherm Res 7:39–65

    CrossRef  Google Scholar 

  • Sheridan MF, Wohletz KH (1983) Hydrovolcanism: basic considerations and review. J Volcanol Geotherm Res 17(1):1–29

    Google Scholar 

  • Sigmundsson F, Gudmundsson MT, Sverrisdottir G, Oskarsson N, Einarsson P, Gronvold K, Hognadottir T (1999) Style of basaltic eruptions at shallow ice/water depths; the 1998 Grimsvotn eruption, Vatnajokull ice cap, Iceland. Eos Trans Am Geophys Union 80:1084

    Google Scholar 

  • Smellie JL (2006) The relative importance of supraglacial versus subglacial meltwater escape in basaltic subglacial tuya eruptions: an important unresolved conundrum. Earth-Sci Rev 74:241–268

    CrossRef  Google Scholar 

  • Smellie JL (2013) Quaternary vulcanism: subglacial landforms. In: Elias SA (ed) The encyclopedia of quaternary science, vol 1, 2nd edn. Elsevier, Amsterdam, pp 780–802

    CrossRef  Google Scholar 

  • Sohn YK, Chough SK (1989) Depositional processes of the Suwolbong tuff ring, Cheju Island (Korea). Sedimentology 36:837–855

    CrossRef  Google Scholar 

  • Sohn YK, Chough SK (1992) The Ilchulbong tuff cone, Cheju Island, South Korea. Sedimentology 39:523–544

    CrossRef  Google Scholar 

  • White JDL, Houghton BF (2000) Surtseyan and related phreatomagmatic eruptions. In: Sigurdsson H, Houghton B, McNutt SR, Rymer H, Stix J (eds) Encyclopedia of volcanoes. Academic, London, pp 495–511

    Google Scholar 

  • Wohletz KH, (1998) Pyroclastic surges and compressible two-phase flow. In: Freundt A, Rosi M. (eds), From Magma to Tephra. Elsevier, Amsterdam

    Google Scholar 

  • Wohletz KH (2003) Water-Magma interaction: physical considerations for the deep submarine environment. Explos Subaq Volcan Geophys Monogr 140:25–49

    CrossRef  Google Scholar 

  • Wohletz KH, McQueen RG (1984) Experimental studies of hydromagmatic volcanism, Studies of geophysics. National Academic Press, Washington, DC, pp 158–169

    Google Scholar 

  • Zimanowski B, Buettner R (2003) Phreatomagmatic explosions in subaqueous volcanism. Geophys Monogr 140:51–60

    Google Scholar 

  • Zimanowski B, Fröhlich G, Lorenz V (1991) Quantitative Experiments on phreatomagmatic explosions. J Volcanol Geotherm Res 48:341–358

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brittany D. Brand .

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Brand, B.D., Hargitai, H., Brož, P. (2014). Hydrovolcanic Feature. In: Encyclopedia of Planetary Landforms. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9213-9_469-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9213-9_469-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-9213-9

  • eBook Packages: Springer Reference Earth & Environm. ScienceReference Module Physical and Materials Science