Chaotic Terrain (Mars)

  • Gro Birkefeldt Møller Pedersen
Living reference work entry


Distinctive area of broken terrain that primarily consists of polygonal, flat-topped blocks of various sizes, of which many preserve remnants of the surrounding upland surface.



Chaotic terrains are irregular to circular fractured areas (Figs. 1 and 2) that consist of jumbles of blocks that vary in size and shape from knobs and irregular conical mounds to angular mesas with preserved remnants of the upland plateau, and they are often located in enclosed to semi-closed depressions surrounded by fractured highlands (Sharp 1973; Nummedal and Prior 1981; Warner et al. 2011).


Crater Floor Subsurface Material Outflow Channel Head Scarp Upland Plateau 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. Carr MH (1979) Formation of Martian flood features by release of water from confined aquifers. J Geophys Res 84:2995–3007CrossRefGoogle Scholar
  2. Chapman MG, Tanaka KL (2002) Related magma–ice interactions: possible origins of Chasmata Chaos, and surface materials in Xanthe, Margaritifer, and Merdiani Terrae, Mars. Icarus 155:324–339. doi:10.1006/icar.2001.6735CrossRefGoogle Scholar
  3. Glotch TD, Christensen PHR (2005) Geologic and mineralogic mapping of Aram Chaos: evidence for a water-rich history. J Geophys Res 110:E09006. doi:10.1029/2004JE002389Google Scholar
  4. Hartmann WK, Raper O (1974) The new Mars. NASAGoogle Scholar
  5. Hoffman N (2000) White Mars: a new model for Mars’ surface and atmosphere based on CO2. Icarus 146(2):326–342CrossRefGoogle Scholar
  6. Kargel JS, Furfaro R, Prieto-Ballesteros O, Rodriguez J, Alexis P, Montgomery DR, Gillespie AR, Marion G, Wood SE (2007) Martian hydrogeology sustained by thermally insulating gas and salt hydrates. Geology 35(11):975CrossRefGoogle Scholar
  7. Komatsu G, Kargel JS, Baker VR, Strom RG, Ori GG, Mosangini C, Tanaka KL (2000) A chaotic terrain formation hypothesis: Explosive outgas and outflow by dissociation of clathrate on Mars. Lunar Planet. Sci. XXXI:1434Google Scholar
  8. Lucchitta BK, Isbell NK, Howingtonkraus A (1994) Topography of Valles Marineris: implications for erosional and structural history. J Geophys Res 99(E2):3783–3798. doi:10.1029/93JE03095CrossRefGoogle Scholar
  9. Masursky H, Boyce JM, Dial AL, Schaber GG, Strobell ME (1977) Classification and time of formation of Martian channels based on Viking data. J Geophys Res 82(28):4016–4038. doi:10.1029/JS082i028p04016CrossRefGoogle Scholar
  10. Maxwell TA, Picard MD (1974) Evidence of subsurface water in equatorial regions of Mars. AAPG Bull 58:915Google Scholar
  11. Meresse S, Costard F, Mangold N, Masson P, Neukum G (2008) Formation and evolution of the chaotic terrains by subsidence and magmatism: Hydraotes Chaos, Mars. Icarus 194(2):487–500. doi:10.1016/j.icarus.2007.10.023CrossRefGoogle Scholar
  12. Montgomery D, Gillespie A. (2005) Formation of Martian outflow channels by catastrophic dewatering of evaporite deposits. Geology, 33: 625–628. doi: 10.1130/G21270.1CrossRefGoogle Scholar
  13. Nummedal D, Prior DB (1981) Generation of martian chaos and channels by debris flows. Icarus 45:77–86CrossRefGoogle Scholar
  14. Pedersen GBM, Head JW (2010) Chaos formation by sublimation of volatile-rich substrate: evidence from Galaxias Chaos, Mars. Icarus 211:316–329CrossRefGoogle Scholar
  15. Rodriguez JAP, Sasaki S, Kuzmin RO, Dohm JM, Tanaka KL, Miyamoto H, Kurita K, Komatsu G, Fairén AG, Ferris JC (2005) Outflow channel sources, reactivation, and chaos formation, Xanthe Terra, Mars. Icarus 175:36–57. doi:10.1016/j.icarus.2004.10.025CrossRefGoogle Scholar
  16. Rodriguez JAP, Kargel JS, Crown DA, Bleamaster LF III, Tanaka KL, Baker VR, Miyamoto H, Dohm JM, Sasaki S, Komatsu G (2006) Headward growth of chasmata by volatile outburst, collapse, and drainage: evidence from Ganges chaos. Mars Geophys Res Lett 33:1–5. doi:10.1029/2006GL026275CrossRefGoogle Scholar
  17. Sharp RP (1973) Mars: fretted and chaotic terrains. J Geophys Res 78:4073–4083CrossRefGoogle Scholar
  18. Sharp RP, Soderblom LA, Murray BC, Cutts JA (1971) The surface of Mars, 2 uncratered terrains. J Geophys Res 76:331–342CrossRefGoogle Scholar
  19. Soderblom LA, Wenner DB (1978) Possible fossil H2O liquid–ice interfaces in the martian crust. Icarus 34:622–637CrossRefGoogle Scholar
  20. Tanaka KL (1999) Debris-flow origin for Simud/Tiu deposits on Mars. J Geophys Res 104:8637–8652. doi:10.1029/98JE02552CrossRefGoogle Scholar
  21. Wang CY, Manga M, Wong A (2005) Floods on Mars released from groundwater by impact. Icarus 175:551–555. doi:10.1016/j.icarus.2004.12.003CrossRefGoogle Scholar
  22. Warner NH, Gupta S, Kim JR, Muller JP, Le Corre L, Morley J, Lin SY, McGonigle C (2011) Constraints on the origin and evolution of Iani Chaos. Mars J Geophys Res E6:E06003. doi:10.1029/2010JE003787Google Scholar
  23. Zegers TE, Oosthoek JHP, Rossi AP, Blom JK, Schumacher S (2010) Melt and collapse of buried water ice: an alternative hypothesis for the formation of chaotic terrains on Mars. Earth Planet Sci Lett 297(3–4):496–504. doi:10.1016/j.epsl.2010.06.049. ISSN 0012-821XCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Nordic Volcanological center, University of IcelandReykjavikIceland