Denivation Features

  • Donald M. Hooper
  • Briony Horgan
Living reference work entry


Sedimentological and morphological features generated by the melting and/or sublimation of snow and ice incorporated into surface sediments, most commonly in aeolian bedforms.


Cold-climate dune fields often contain interbedded sand, snow, and ice. These mixed deposits of wind-driven sand and snow are defined as niveo-aeolian deposits by Cailleux (1974, 1978) and were reviewed by Koster (1988) and Koster and Dijkmans (1988). As the snow and ice progressively ablate, these deposits are reworked and locally redeposited (French 2007). The lee slopes (or slip faces) of large aeolian dunes serve as a catchment for layers of wind-drifted niveo-aeolian deposits; such layers may be several meters thick. The sedimentological and morphological disturbances resulting from postdepositional temperature increases that cause the melting and/or sublimation of snow and ice are referred to as denivation features or bedforms (Cailleux 1974; Koster and Dijkmans 1988; French 2007)....


Debris Flow Dune Field Denivation Process Aeolian Transport Dune Crest 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. Ahlbrandt TS, Andrews S (1978) Distinctive sedimentary features of cold-climate eolian deposits, North Park, Colorado. Palaeogeogr Palaeoclimatol Palaeoecol 25:327–351CrossRefGoogle Scholar
  2. Ballantyne CK, Whittington G (1987) Niveo-aeolian sand deposits on An Teallach, Wester Ross, Scotland. Trans R Soc Edinb Earth Sci 78:51–63CrossRefGoogle Scholar
  3. Bourke MC (2004) Niveo-aeolian and denivation deposits on Mars. Eos Trans AGU, 85(47), Fall Meet Suppl, Abstract P21B-01Google Scholar
  4. Bourke MC (2005) Alluvial fans on dunes in Kaiser crater suggest niveo-aeolian and denivation processes on Mars. LPSC XXXVI #2373Google Scholar
  5. Bourke MC (2012) Seasonal change in north polar dune morphology suggests the importance of cryo-aeolian activity. LPSC XLIII #2885Google Scholar
  6. Bourke MC, Ewing RC, Finnegan D, McGowan HA (2009) Sand dune movement in Victoria Valley, Antarctica. Geomorphology 109:148–160. doi:10.1016/j.geomorph.2009.02.028CrossRefGoogle Scholar
  7. Bristow CS, Augustinus P, Wallis IC, Jol HM, Rhodes EJ (2010) Investigation of the age and migration of reversing dunes in Antarctica using GPR and OSL with implications for GPR on Mars. Earth Planet Sci Lett 289:30–42CrossRefGoogle Scholar
  8. Cailleux A (1974) Formes précoces et albédos du nivéo-éolien. Z Geomorphol 18:437–459Google Scholar
  9. Cailleux A (1976) Formes et dépôts nivéo-éoliens sur le pied de glace, Poste-de-la-Baleine, Québec subarctique. Rev Géogr Montr 30:213–219Google Scholar
  10. Cailleux A (1978) Niveo-eolian deposits. In: Fairbridge RW, Bourgeois J (eds) The encyclopedia of sedimentology, vol 6, Encyclopedia of earth sciences. Reinhold, New York, pp 501–503Google Scholar
  11. Calkin PE, Rutford RH (1974) The sand dunes of Victoria Valley, Antarctica. Geogr Rev 64:189–216CrossRefGoogle Scholar
  12. Dijkmans JWA (1990) Niveo-aeolian sedimentation and resulting sedimentary structures; Sǿndre Strǿmfjord area, Western Greenland. Permafr Periglac Process 1:83–96CrossRefGoogle Scholar
  13. Dinwiddie CL, McGinnis RN, Stillman DE, Hooper DM, Michaels TI, Bjella K, Grimm RE, Necsoiu M (2010) Sand, wind, and ice: Mars analog aeolian studies of the Great Kobuk Sand Dunes. In: 2nd international planetary dunes workshop: planetary analogs – integrating models, remote sensing, and field data, LPI contribution no. 1552, pp 21–22, #2029Google Scholar
  14. Dinwiddie CL, Michaels TI, Hooper DM, Stillman DE (2012) Environmental conditions and meteorologic context for modification of the Great Kobuk Sand Dunes, northwestern Alaska. In: 3rd international planetary dunes workshop: remote sensing and image analysis of planetary dunes, LPI contribution no. 1673, pp 36–37, #7033Google Scholar
  15. Feldman WC, Bourke MC, Elphic RC, Maurice S, Bandfield J, Prettyman TH, Diez B, Lawrence DJ (2008) Hydrogen content of sand dunes within Olympia Undae. Icarus 196:422–432. doi:10.1016/j.icarus.2007.08.044CrossRefGoogle Scholar
  16. French H (2007) The periglacial environment, 3rd edn. Wiley, ChichesterCrossRefGoogle Scholar
  17. Hansen CJ, Bourke M, Bridges NT, Byrne S, Colon C, Diniega S, Dundas C, Herkenhoff K, McEwen A, Mellon M, Portyankina G, Thomas N (2011) Seasonal erosion and restoration of Mars’ northern polar dunes. Science 331:575–578. doi:10.1126/science.1197636CrossRefGoogle Scholar
  18. Hauber E, Reiss D, Ulrich M, Preusker F, Trauthan F et al (2011) Landscape evolution in Martian mid-latitude regions: insights from analogous periglacial landforms in Svalbard. In: Balme MR et al (eds) Martian geomorphology. Geological Society, LondonGoogle Scholar
  19. Hooper DM, Dinwiddie CL (2014) Debris flows on the Great Kobuk Sand Dunes, Alaska: implications for analogous processes on Mars. Icarus 230:15–28CrossRefGoogle Scholar
  20. Horgan B (2010) Wind, water, and the sands of Mars. PhD dissertation, Cornell UniversityGoogle Scholar
  21. Horgan B, Bell JF III (2012) Seasonally active slipface avalanches in the north polar sand sea of Mars: evidence for a wind-related origin. Geophys Res Lett 39(9):09201. doi:10.1029/2012GL051329CrossRefGoogle Scholar
  22. Horgan B, Bell JF III, Bourke MC (2010) Dry flow, surface cementation, and ice induration features on dunes in the north polar region of Mars. LPSC XLI #1325Google Scholar
  23. Hugenholtz CH, Wolfe SA, Moorman BJ (2007) Sand-water flows on cold-climate eolian dunes: environmental analogs for the eolian rock record and Martian sand dunes. J Sediment Res 77:607–614CrossRefGoogle Scholar
  24. Koster EA (1988) Ancient and modern cold-climate aeolian sand deposition: a review. J Quat Sci 3(1):69–83CrossRefGoogle Scholar
  25. Koster EA, Dijkmans JWA (1988) Niveo-aeolian deposits and denivation forms, with special reference to the Great Kobuk Sand Dunes, Northwestern Alaska. Earth Surf Process Landf 13:153–170CrossRefGoogle Scholar
  26. Lewkowicz AG, Young KL (1991) Observations of aeolian transport and niveo-aeolian deposition at three lowland sites, Canadian Arctic Archipelago. Permafr Periglac Process 2:197–210CrossRefGoogle Scholar
  27. Lorenz RD, Valdez A (2012) Observations of niveo-aeolian activity at Great Sand Dunes National Park and Preserve (GSDNPP). In: 3rd international planetary dunes workshop: remote sensing and image analysis of planetary dunes, LPI contribution no. 1673, pp 66–67, #7013Google Scholar
  28. Mangold N, Costard F, Forget F (2003) Debris flows over sand dunes on Mars: evidence for liquid water. J Geophys Res 108(E4):5027. doi:10.1029/2002JE001958CrossRefGoogle Scholar
  29. McKenna-Neuman C (1990) Observations of winter aeolian transport and niveo-aeolian deposition at crater lake, pangnirtung pass, N.W.T., Canada. Permafr Periglac Process 1:235–247CrossRefGoogle Scholar
  30. Necsoiu M, Leprince S, Hooper DM, Dinwiddie CL, McGinnis RN, Walter GR (2009) Monitoring migration rates of an active subarctic dune field using optical imagery. Remote Sens Environ 113:2441–2447CrossRefGoogle Scholar
  31. Putzig NE, Bowers LM, Mellon MT, Herkenhoff KE, Phillips RJ (2012) Thermal effects of physical heterogeneity in Olympia Undae. In: 3rd international planetary dunes workshop: remote sensing and image analysis of planetary dunes, LPI contribution no. 1673, pp 75–76, #7054Google Scholar
  32. Reiss D, Jaumann R (2003) Recent debris flows on Mars: seasonal observations of the Russell Crater dune field. Geophys Res Lett 30. doi:10.1029/2002GL016704Google Scholar
  33. Rochette J-C, Cailleux A (1971) Dépôts nivéo-éoliens annuels à Poste-de-la-Baleine, Nouveau Québec (English summary). Rev Géogr Montr 25(1):34–41Google Scholar
  34. Steidtmann JR (1973) Ice and snow in eolian sand dunes of southwestern Wyoming. Science 179:796–798CrossRefGoogle Scholar
  35. Swett K, Mann K (1986) Terrace scarp deflation as a renewable source for eolian sediments in an Arctic periglacial setting. Polar Res 5:45–52CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Geosciences and Engineering DivisionSouthwest Research Institute®San AntonioUSA
  2. 2.Department of Earth, Atmospheric, and Planetary SciencesPurdue UniversityWest LafayetteUSA