Skip to main content

Lava Flow

  • Living reference work entry
  • First Online:
Encyclopedia of Planetary Landforms

Definition

Spatially distinct solidified surface rock unit produced by lava from a single continuous episode of volcanic activity (Bates and Jackson 1987; Self et al. 1997). The term lava flow may describe both the process and the product.

Description

Lava flows are typically lobate and made up of several flow lobes (Self et al. 1997) that often coalesce with previously emplaced flows, forming lava flow fields or lava plains (volcanic plains). Flood lavas form lava sheet flows (Keszthelyi et al. 2000). Channelized lava flows are fed by lava channels or lava tubes (where a roof forms over the flow). Accumulation of thick and/or high viscosity flows may result in volcanic constructs (volcano, steep-sided dome (Io), and steep-sided dome (Venus), etc.).

Morphometry

Lava flows may reach tens to hundreds of kilometer distances on Earth (Aprodov 1982) and a hundred to a thousand kilometer on Mars. The longest flows are tube fed (Sakimoto and Baloga 1995), due to the insulating effect caused...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Aprodov VA (1982) Volcanoes. Mysl, Мoscow, p 367 (In Russian)

    Google Scholar 

  • Bates RL, Jackson JA (1987) Glossary of geology, 3rd edn. American Geological Institute, Alexandria, p 788

    Google Scholar 

  • Bray VJ, Tornabene LL, Keszthelyi LP, McEwen AS, Hawke BR, Giguere TA, Kattenhorn SA, Garry WB, Rizk B, Caudill CM, Gaddis LR, van der Bogert CH (2010) New insight into lunar impact melt mobility from the LRO camera. Geophys Res Lett 37:L21202. doi:10.1029/2010GL044666

    Article  Google Scholar 

  • Byrne PK, Klimczak C, Williams DA, Hurwitz DM, Solomon SC, Head JW, Preusker F, Oberst J (2013) An assemblage of lava flow features on Mercury. J Geophys Res Planets 118. doi:10.1002/jgre.20052

    Google Scholar 

  • Byrnes JM (2002) Lava flow field emplacement studies of Mauna Ulu (Kilauea volcano, Hawai’i, USA) and Venus, using field and remote sensing analyses. Doctoral thesis, University of Pittsburgh

    Google Scholar 

  • Byrnes JM, Crown DA (2002) Morphology, stratigraphy, and surface roughness properties of Venusian lava flow fields. J Geophys Res 107(E10):9-1, CiteID 5079. doi:10.1029/2001JE001828

    Google Scholar 

  • Carter LM, Neish CD, Bussey DBJ, Spudis PD, Patterson GW, Cahull JT, Raney RK (2012) Initial observations of lunar impact melts and ejecta flows with the Mini-RF radar. J Geophys Res 117:E00H09. doi:10.1029/2011JE003911

    Google Scholar 

  • Cattermole P (1987) Sequence, rheological properties, and effusion rates of volcanic flows at Alba Patera, Mars. J Geophys Res 92:E553–E560

    Article  Google Scholar 

  • Crown DA, Greeley R (1993) Volcanic geology of Hadriaca Patera and the eastern Hellas region of Mars. J Geophys Res 98(E2):3431–3451

    Article  Google Scholar 

  • Crumpler LS, Head JW, Aubele JC, Guest J, Saunders RS (1992) Venus volcanism: global distribution and classification from Magellan data. Lunar Planet Sci Conf XXIII:277, Houston

    Google Scholar 

  • Davies AG (1996) Io’s volcanism: thermo-physical models of silicate lava compared with observations of thermal emission. Icarus 124:45–61

    Article  Google Scholar 

  • Davies AG, Keszthelyi LP, Wilson L (2006) Estimation of maximum effusion rate for the Pillan 1997 eruption on Io: implications for massive basaltic flow emplacement on Earth and Mars. 37th Lunar Planet Sci Conf, abstract #1155, Houston

    Google Scholar 

  • Davies AG, Wilson L, Keszthelyi L, Williams DA (2007) Lava flow emplacement at Pillan, Io in 1997: implications for massive basaltic flow emplacement on Earth and Mars. Am Geophys Union, fall meeting 2007, abstract #P34A-08

    Google Scholar 

  • Duraiswami RA, Bondre NR, Magagave S (2008) Morphology of rubbly pahoehoe (simple) flows from the Deccan Volcanic Province: implications for style of emplacement. J Volcanol Geotherm Res 177:822–836

    Article  Google Scholar 

  • Dutton CE (1884) Hawaiian volcanoes. US Geol Surv Annu Rep 4:75–219

    Google Scholar 

  • Ernst RE, Desnoyers DW (2004) Lessons from Venus for understanding mantle plumes on Earth. Phys Earth Planet In 146:195–229

    Article  Google Scholar 

  • Garry WB, Zimbelman JR, Gregg TKP (2007) Morphology and emplacement of a long channeled lava flow near Ascraeus Mons Volcano, Mars. J Geophys Res 112(E8), CiteID E08007

    Google Scholar 

  • Gifford AW, El-Baz F (1981) Thicknesses of Lunar Mare flow fronts. Moon Planets 24:391–398

    Article  Google Scholar 

  • Gregg TKP, Greeley R (1993) Formation of Venusian canali - Considerations of lava types and their thermal behaviors. J Geophys Res 98(E6):10,873–10,882

    Article  Google Scholar 

  • Greeley R, Theilig E, Christensen P (1984) The Mauna Loa sulfur flow as an analog to secondary sulfur flows on Io. Icarus 60:189–199

    Article  Google Scholar 

  • Hiesinger H, Head JW, Wolf U, Jaumann R, Neukum G (2002) Lunar mare basalt flow units: thicknesses determined from crater size-frequency distributions. Geophys Res Letter 29:89–1, CiteID 1248. doi10.1029/2002GL014847

    Google Scholar 

  • Hon K, Kauahikaua J, Denlinger R, Mackay K (1994) Emplacement and inflation of pahoehoe sheet flows: observations and measurements of active lava flows on Kilauea Volcano. Hawaii Geol Soc Am Bull 106:351–370

    Article  Google Scholar 

  • Hon K, Gansecki C, Kauahikaua J (2003) The Transition from ‘A‘ā to Pāhoehoe crust on flows emplaced during the Pu‘u ‘Ō ‘ō -Kūpaianaha eruption. In: Heliker C, Swanson DA, Takahashi TJ (eds) The Pu‘u ‘Ō‘ō-Kūpaianaha eruption of Kīlauea volcano, Hawai‘i: the first 20 years. Denver, CO 80225, pp 89–103

    Google Scholar 

  • Howard KA, Wilshire HG (1975) Flows of impact melt at lunar craters. US Geol Surv J Res 3:237–251

    Google Scholar 

  • Hulme G, Fielder G (1997) Effusion rates and rheology of lunar lavas. Philos Trans Ser A 285:227–234

    Article  Google Scholar 

  • Jaeger WL, Keszthelyi LP, Skinner JA, Milazzo MP, McEwen AS, Titus TN, Rosiek MR, Galuszka DM, Howington-Kraus E, Kirk RL, Team HRISE (2010) Emplacement of the youngest flood lava on Mars: a short, turbulent story. Icarus 205:230–243

    Article  Google Scholar 

  • Keszthelyi L, Self S (1998) Some physical requirements for the emplacement of long basaltic lava flows. J Geophys Res 103(B11):27447–27464

    Article  Google Scholar 

  • Keszthelyi L, Thordarson T (2000) Rubbly pahoehoe: a previously undescribed but widespread lava type transitional between a’a and pahoehoe. Geol Soc Am Abstr Progr 32:7

    Google Scholar 

  • Keszthelyi L, McEwen AS, Thordarson T (2000) Terrestrial analogs and thermal models for Martian flood lavas. J Geophys Res 105:15,027–15,049

    Article  Google Scholar 

  • Keszthelyi L et al (2001) Imaging of volcanic activity on Jupiter’s moon Io by Galileo during the Galileo Europa Mission and the Galileo Millennium Mission. J Geophys Res 106(E12):33025–33052. doi:10.1029/2000JE001383

    Article  Google Scholar 

  • Keszthelyi L, Thordarson T, McEwen A, Haack H, Guilbaud M-N, Self S, Rossi MJ (2004) Icelandic analogs to Martian flood lavas. Geochemistry Geophysics Geosystems 5(11):CiteID Q11014

    Google Scholar 

  • Keszthelyi L, Self S, Thordarson T (2006) Flood lavas on Earth, Io and Mars. J Geol Soc 163(2):253–264

    Article  Google Scholar 

  • Keszthelyi LP, Jaeger WL, Dundas CM, Martínez-Alonso S, McEwen AS, Milazzo MP (2010) Hydrovolcanic features on Mars: preliminary observations from the first Mars year of HiRISE imaging. Icarus 205:211–229

    Article  Google Scholar 

  • Krafft M, Keller J (1989) Temperature measurements in carbonatite lava lakes and flows from Oldoinyo Lengai, Tanzania. Science 245(4914):168–170. doi:10.1126/science.245.4914.168

    Article  Google Scholar 

  • Lancaster MG, Guest JE, Roberts KM, Head JW (1992) Large-volume lava flow fields on Venus: dimensions and morphology. Lunar and planetary institute papers presented to the international colloquium on Venus, Houston, pp 62–64

    Google Scholar 

  • Lancaster MG, Guest JE, Magee KP (1995) Great Lava flow fields on Venus. Icarus 118:69–86

    Article  Google Scholar 

  • Le Corre L, Le Mouélic S, Sotin C, Combe J-P, Rodriguez S, Barnes JW, Brown RH, Buratti BJ, Jaumann R, Soderblom J, Soderblom LA, Clark R, Baines KH, Nicholson PD (2009) Analysis of a cryolava flow-like feature on Titan. Planet Space Sci 57(7):870–879

    Article  Google Scholar 

  • Leverington DW (2011) A volcanic origin for the outflow channels of Mars: key evidence and major implications. Geomorphology 132:51–75

    Article  Google Scholar 

  • Lopes RMC, Kamp LW, Smyth WD, Mouginis-Mark P, Kargel J, Radebaugh J, Turtle EP, Perry J, Williams DA, Carlson RW, Douté S et al (2004) Lava lakes on Io: observations of Io’s volcanic activity from Galileo NIMS during the 2001 fly-bys. Icarus 169:140–174

    Article  Google Scholar 

  • Lopes RMC, Elachi C, Paganelli F, Mitchell K, Stofan E, Wood C, Kirk R, Lorenz R, Lunine J, Wall S, Cassini RADAR Team (2005) Flows on the surface of Titan as revealed by the Cassini RADAR. American Astronomical Society, DPS meeting #37, #53.03; Bull Am Astron Soc 37:739

    Google Scholar 

  • Lopes RMC, Kirk RL, Mitchell KL, LeGall A, Barnes JW, Hayes A, Kargel J, Wye L, Radebaugh J, Stofan ER, Janssen MA, Neish CD, Wall SD, Wood CA, Lunine JI, Malaska M (2013) Cryovolcanism on Titan: new results from Cassini RADAR and VIMS. J Geophys Res Planets 118. doi:10.1029/2012JE004239

    Google Scholar 

  • MacDonald GA (1953) Pahoehoe, aa, and block lava. Am J Sci 251:169–191

    Article  Google Scholar 

  • Magee KP, Head JW (2001) Large flow fields on Venus: implications for plumes, rift associations, and resurfacing. In: Ernst RE, Buchan KL (eds) Mantle plumes: their identification through time, vol 352, Geological Society of America special paper. Geological Society of America, Boulder, pp 81–101

    Google Scholar 

  • McEwen AS, Keszthelyi L, Geissler P, Simonelli DP, Carr MH, Johnson TV, Klaasen KP, Breneman HH, Jones TJ, Kaufman JM, Magee KP, Senske DA, Belton MJS, Schubert G (1998) Active volcanism on Io as seen by Galileo SSI. Icarus 135:181–219

    Article  Google Scholar 

  • Milazzo MP, Keszthelyi LP, McEwen AS (2001) Observations and initial modeling of lava-SO2 interactions at Prometheus, Io. J Geophys Res 106(E12):33121–33128

    Article  Google Scholar 

  • Miyamoto H, Sasaki S (2000) Two different supply styles of crater outflow materials on Venus. Icarus 145:533–545. doi:10.1006/icar.2000.6346

    Article  Google Scholar 

  • Murase T, McBirney AR (1970) Viscosity of Lunar lavas. Science 167:1491–1493

    Article  Google Scholar 

  • Neukum G, Horn P (1976) Effects of lava flows on lunar crater populations. The Moon 15:205–222

    Article  Google Scholar 

  • Perfit MR, Chadwick WW (1998) Magmatism at mid-ocean ridges: constraints from volcanological and geochemical investigations. In: Buck WR et al (eds) Faulting and magmatism at mid-ocean ridges, vol 106, AGU Geophys Monogr. American Geophysical Union, Washington, DC, pp 59–116

    Chapter  Google Scholar 

  • Peterson DW, Tilling RI (1980) Transition of basaltic lava from pahoehoe to aa, Kilauea Volcano, Hawaii: field observations and key factors. J Volcanol Geotherm Res 7:271–293

    Article  Google Scholar 

  • Plescia JB (1990) Recent flood lavas in the Elysium region of Mars. Icarus 88:465–490

    Article  Google Scholar 

  • Roberts KM, Guest JE, Head JW, Lancaster MG (1992) Mylitta Fluctus, Venus: rift-related, centralized volcanism and the emplacement of large-volume flow units. J Geophys Res 97(E10):15991–16015. doi:10.1029/92JE01245

    Article  Google Scholar 

  • Rowland SK, Walker GPL (1987) Toothpaste lava: Characteristics and origin of a lava structural type transitional between pahoehoe and aa. Bull Volcanol 49:631–641

    Article  Google Scholar 

  • Rowland SK, Walker GPL (1990) Pahoehoe and aa in Hawaii: volumetric flow rate controls the lava structure. Bull Volcanol 52(8):615–628

    Article  Google Scholar 

  • Russell CT, Raymond CA, Jaumann R, McSween HY, De Sanctis MC, Nathues A, Prettyman THH, Ammannito E, Reddy V, Preusker F, O’Brien DP, Marchi S, Denevi BW, Buczkowski DL, Pieters CM, McCord TB, Li J-Y, Mittlefehldt DW, Combe J-P, Williams DA, Hiesinger H, Yingst RA, Polanskey CA, Joy SP (2013) Dawn completes its mission at 4 Vesta. Meteor Planet Sci 48:2076–2089. doi:10.1111/maps.12091

    Article  Google Scholar 

  • Sakimoto SEH, Baloga SM (1995) Thermal controls on tube-fed planetary lava flow lengths. Lunar Planet Sci Conf 26:1217, Houston

    Google Scholar 

  • Schenk PM, Williams DA (2004) A potential thermal erosion lava channel on Io. Geophys Res Lett 31:L23702. doi:10.1029/2004GL021378

    Google Scholar 

  • Schenk PM, Wilson RR, Davies AG (2004) Shield volcano topography and the rheology of lava flows on Io. Icarus 169:98–110

    Article  Google Scholar 

  • Self S, Thordarson T, Keszthelyi L (1996) A new model for the emplacement of the Columbia River basalts as large inflated pahoehoe sheet lava flow fields. Geophys Res Lett 23:2689–2692

    Article  Google Scholar 

  • Self S, Thordarson T, Keszthelyi L (1997) Emplacement of continental flood basalt lava flows. In: Mahoney JJ, Coffin MF (eds) Large igneous provinces: continental, oceanic and planetary flood volcanism, vol 100, Geophysical monograph. American Geophysical Union, Washington, DC, pp 381–410

    Google Scholar 

  • Self S, Keszthelyi L, Thordarson T (1998) The importance of pahoehoe. Ann Rev Earth Planet Sci 26:81–110

    Article  Google Scholar 

  • Shockey KM (2004) A long lava flow in the Tharsis region of mars as mapped using themis data. Geological society of America, Annual meeting, Denver

    Google Scholar 

  • Snyder D (2002) Cooling of lava flows on Venus: the coupling of radiative and convective heat transfer. J Geophys Res 107(E10):10–1, CiteID 5080. doi:10.1029/2001JE001501

    Google Scholar 

  • Thordarson T, Self S (1998) The Roza Member, Columbia River Basalt Group: a gigantic pahoehoe lava flow field formed by endogenous processes? J Geophys Res 103(Bll):27411–27445

    Article  Google Scholar 

  • Walker GPL (1972) Compound and simple lava flows and flood basalts. Bull Volcanol 35:579–590

    Article  Google Scholar 

  • Walker GPL (1989) Spongy pahoehoe in Hawaii: a study of vesicle-distribution patterns in basalt and their significance. Bull Volcanol 51:199–209

    Article  Google Scholar 

  • Williams DA 17 others and the Dawn Science Team (2013) Impact-related flow features on asteroid vesta. 44th Lunar Planet Sci Conf, abstract #1611, Houston

    Google Scholar 

  • Williams DA, Howell RR (2007) Active volcanism: effusive eruptions. In: Lopes RMC, Spences JR (eds) Io after Galileo. A new view of Jupiter’s volcanic moon. Springer-Praxis, Chichester, pp 133–161

    Google Scholar 

  • Williams DA, Keszthelyi LP, Crown DA, Yff JA, Jaeger WL, Schenk PM, Geissler PE, Becker TL (2011) Volcanism on Io: new insights from global geologic mapping. Icarus 214:91–112

    Article  Google Scholar 

  • Wilmoth RA, Walker GPL (1993) P-type and S-type pahoehoe: a study of vesicle distributions patterns in Hawaiian lava flows. J Volcanol Geotherm Res 55:129–142

    Article  Google Scholar 

  • Wilson L, Keil K (1996) Volcanic eruptions and intrusions on the asteroid 4 Vesta. J Geophys Res 101:18927–18940

    Article  Google Scholar 

  • Zimbelman JR (1998) Emplacement of long lava flows on planetary surfaces. J Geophys Res 103(B11):27503–27516. doi:10.1029/98JB01123

    Article  Google Scholar 

  • Zimbelman JR (2003) Flow field stratigraphy surrounding Sekmet Mons Volcano, Kawelu Planitia, Venus. J Geophys Res 108(E5):9–1, CiteID 5043. doi:10.1029/2002JE001965

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ákos Kereszturi .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science Business Media New York (outside the USA)

About this entry

Cite this entry

Kereszturi, Á., Hargitai, H., Zimbelman, J. (2014). Lava Flow. In: Encyclopedia of Planetary Landforms. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9213-9_401-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9213-9_401-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-9213-9

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics