Skip to main content

Impact Melt Pond

  • Living reference work entry
  • First Online:
Encyclopedia of Planetary Landforms

Definition

An impact melt pond is a flat-lying coherent deposit of impact melt-rich rock that settled under the influence of gravity in a topographic depression while molten.

Synonyms

Melt pool; Ponded impact melt deposit

Description

Impact-generated melt can form a ponded deposit with a level surface by flowing from topographic highs into lower basins, including small closed depressions. The impact melt rock in a ponded deposit may be relatively free of granular debris, or it may be a mixture of melt and lesser particulate clasts. Depending on the volume of melt, the viscosity and flow of melt, and the availability and size of local depressions, impact melt ponds range from small local features (e.g., localized deposits in terraced crater walls) to large-scale deposits (e.g., occupying a crater floor).

Formation

Extensive reviews of the impact cratering process and its relationship to shock-induced melting can be found in Melosh (1989), French (1998), and Osinski and Pierazzo (2013)....

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abramov O, Kring DA (2005) Impact-induced hydrothermal activity on early Mars. J Geophys Res Planet. doi:10.1029/2005JE002453

    Google Scholar 

  • Ashley JW, Robinson MS, Hawke BR, van der Bogert CH, Hiesinger H, Sato H, Speyerer EJ, Enns AC, Wagner EV, Young KE, Burns KN (2012) Geology of the King Crater region – new insights into impact melt dynamics on the Moon. J Geophys Res Planet. doi:10.1029/2011JE003990

    Google Scholar 

  • Basilevsky AT (1976) On the evolution rate of small lunar craters. Proc 7th Lunar Sci Conf, Geochim Cosmochim Acta Suppl 7:1005–1020

    Google Scholar 

  • Beach MJ, Head JW, Ostrach LR, Robinson MS, Denevi BW, Solomon SC (2012) The influence of pre-existing topography on the distribution of impact melt on Mercury. 43rd Lunar Planet Sci Conf, abstract #1335, Houston

    Google Scholar 

  • Bray VJ, Tornabene LL, Keszthelyi LP, McEwen AS, Hawke BR, Giguere TA, Kattenhorn SA, Garry WB, Rizk B, Caudill CM, Gaddis LR, van der Bogert CH (2010) New insight into lunar impact melt mobility from the LRO camera. Geophys Res Lett. doi:10.1029/2010GL044666

    Google Scholar 

  • Chadwick DJ, Schaber GG (1993) Impact crater outflows on Venus: morphology and emplacement mechanisms. J Geophys Res Planet 98:20891–20902

    Article  Google Scholar 

  • Chanou A, Tornabene LL, Osinski GR, Zanetti M, Pickersgill AE, Shankar B, Marion C, Mader MM, Souders KA, Sylvester P, Jolliff BL, Shaver C (2012) Impact melt-pond scenario tested during the KRASH 2011 analogue mission at Kamestastin impact structure. 43rd Lunar Planet Sci Conf, abstract #2580, Houston

    Google Scholar 

  • Cintala JM, Grieve RAF (1998) Scaling impact melting and crater dimensions: implications for the lunar cratering record. Met Planet Sci. 33(4):889–912. doi:10.1111/j.1945-5100.1998.tb01695.x

    Google Scholar 

  • Denevi BW, Blewett DT, Buczkowski DL, Capaccioni F, Capria MT, Sanctis MCD, Garry WB, Gaskell RW, Corre LL, Li J-Y, Marchi S, McCoy TJ, Nathues A, O’Brien DP, Petro NE, Pieters CM, Preusker F, Raymond CA, Reddy V, Russell CT, Schenk P, Scully JEC, Sunshine JM, Tosi F, Williams DA, Wyrick D (2012) Pitted Terrain on Vesta and implications for the presence of volatiles. Science 338:246–249

    Article  Google Scholar 

  • French BM (1998) Traces of catastrophe. LPI contribution no. 954

    Google Scholar 

  • Gault DE, Quaide WL, Oberbeck VR (1968) Impact cratering mechanics and structures. In: French BM, Short NM (eds) Shock metamorphism of natural materials. Mono Book Corporation, Baltimore, pp 87–99

    Google Scholar 

  • Grieve RAF, Cintala MJ (1995) Impact melting on Venus: some considerations for the nature of the cratering record. Icarus 114:68–79

    Article  Google Scholar 

  • Grieve RAF, Cintala MJ (1997) Planetary differences in impact melting. Adv Space Res 20(8):1551–1560

    Article  Google Scholar 

  • Grieve RAF, Dence MR, Robertson PB (1977) Cratering processes: as interpreted from the occurrence of impact melts. In: Roddy DJ, Pepin RO, Merrill RB (eds) Impact and explosion cratering. Pergamon Press, New York, pp 791–814

    Google Scholar 

  • Hartmann WK (1968) Lunar crater counts. VI: the young craters Tycho, Aristarchus, and Copernicus. Lunar Planet Lab Commun 8:145–156

    Google Scholar 

  • Hawke BR, Head JW (1977) Impact melt on lunar crater rims. In: Impact and explosion cratering: planetary and terrestrial implications. Proceedings of the symposium on planetary cratering mechanics, Flagstaff, 13–17 Sept 1976. Pergamon Press, New York, pp 815–841

    Google Scholar 

  • Hawke BR, Head JW (1992) The distribution and modes of occurrence of impact melt at lunar craters. In: International conference on large meteorite impacts and planetary evolution, Sudbury, Ontario, Canada, pp 37–38

    Google Scholar 

  • Head JW (1975) Processes of lunar crater degradation: changes in style with geologic time. Moon 12:299–329

    Article  Google Scholar 

  • Hiesinger H, van der Bogert CH, Pasckert JH, Funcke L, Giacomini L, Ostrach LR, Robinson MS (2012) How old are young lunar craters? J Geophys Res Planet. doi:10.1029/2011JE003935

    Google Scholar 

  • Hörz F, Cintala M (1997) The Barringer Award address presented 1996 July 25, Berlin, Germany: impact experiments related to the evolution of planetary regoliths. Meteorit Planet Sci 32:179–209

    Article  Google Scholar 

  • Hörz F, Hartung JB, Gault DE (1971) Micrometeorite craters on lunar rock surfaces. J Geophys Res 76:5770–5798

    Article  Google Scholar 

  • Howard KA, Wilshire HG (1975) Flows of impact melt at lunar craters. J Res Geol Surv 3:237–251

    Google Scholar 

  • Krüger T, van der Bogert CH, Hiesinger H (2013) New high-resolution melt distribution map and topographic analysis of Tycho crater. 44th Lunar Planet Sci Conf, abstract #2152, Houston

    Google Scholar 

  • Melosh HJ (1989) Impact cratering: a geologic process. Oxford University Press, New York, p 245

    Google Scholar 

  • Melosh HJ, Ivanov BA (1999) Impact crater collapse. Annu Rev Earth Planet Sci 27:385–415

    Article  Google Scholar 

  • Morris AR, Mouginis-Mark PJ, Garbeil H (2010) Possible impact melt and debris flows at Tooting Crater, Mars. Icarus 209:369–389

    Article  Google Scholar 

  • Oberbeck VR (1975) The role of ballistic erosion and sedimentation in lunar stratigraphy. Rev Geophys 13:337–362

    Article  Google Scholar 

  • Osinski G, Pierazzo RE (2013) Impact cratering: processes and products. Wiley-Blackwell, Chichester, p 316

    Google Scholar 

  • Osinski GR, Grieve RAF, Spray JG (2004) The nature of the groundmass of surficial suevite from the Ries impact structure, Germany, and constraints on its origin. Meteorit Planet Sci 39:1655–1683

    Article  Google Scholar 

  • Osinski GR, Lee P, Spray JG, Parnell J, Lim DSS, Bunch TE, Cockell CS, Glass B (2005) Geological overview and cratering model for the Haughton impact structure, Devon Islands, Canadian High Arctic. Meteorit Planet Sci 40:1759–1776

    Article  Google Scholar 

  • Osinski GR, Grieve RAF, Collins GS, Marion C, Sylvester P (2003) The effect of target lithology on the products of impact melting. Meteorit Planet Sci 43:1939–1954

    Article  Google Scholar 

  • Osinski GR, Tornabene LL, Grieve RAF (2011) Impact ejecta emplacement on terrestrial planets, Earth and Planetary Sci. Lett. 310:167–181

    Google Scholar 

  • Osinski GR, Grieve RAF, Marion C, Chanou A (2013) Impact melting. In: Osinski GR, Pierazzo E (eds) Impact cratering: processes and products. Wiley-Blackwell, Chichester, pp 125–145

    Google Scholar 

  • Osinski GR, Tornabene LL, Sears DWG, Hughes SS, Heldmann JL (2014) Impact craters as probes of fluids on differentiated bodies. 45th Lunar Planet Sci Conf, abstract #2439, Houston

    Google Scholar 

  • Pierazzo E, Melosh HJ (2000) Melt production in oblique impacts. Icarus 145:252–261

    Article  Google Scholar 

  • Plescia JB, Cintala MJ (2012) Impact melt in small lunar highland craters. J Geophys Res Planet. doi:10.1029/2011JE003941

    Google Scholar 

  • Plescia JB, Robinson MS, Paige DA (2010) Giordano Bruno: the young and the restless. 41st Lunar Planet Sci Conf, abstract #203, Houston

    Google Scholar 

  • Pope KO, Kieffer SW, Ames DE (2006) Impact melt sheet formation on Mars and its implication for hydrothermal systems and exobiology. Icarus 183:1–9

    Article  Google Scholar 

  • Robinson MS, Ashley JW, Boyd AK, Wagner RV, Speyerer EJ, Hawke BR, Hiesinger H, van der Bogert CH (2012) Confirmation of sublunarean voids and thin layering in mare deposits. Planet Space Sci 69:18–27

    Article  Google Scholar 

  • Schon SC, Head JW, Baker DMH, Ernst CM, Prockter LM, Murchie SL, Solomon SC (2011) Eminescu impact structure: insight into the transition from complex crater to peak-ring basin on Mercury. Planet Space Sci 59:1949–1959

    Article  Google Scholar 

  • Schultz PH, Spencer J (1979) Effects of substrate strength on crater statistics: implications for surface ages and gravity scaling. Proc 10th Lunar Planet Sci Conf, Geochim Cosmochim Acta Suppl 11:1081–1083

    Google Scholar 

  • Shoemaker EM, Batson RM, Holt HE, Morris EC, Rennilson JJ, Whitaker EA (1968) Television observations from surveyor VII. In: Surveyor VII mission report, part II. Science results. JPL technical report 32-1264. pp 9–76

    Google Scholar 

  • Stopar JD, Hawke BR, Robinson MS, Denevi BW, Giguere TA (2012) Distribution, occurrence, and degradation of impact melt associated with small lunar craters. 43rd Lunar Planet Sci Conf, abstract #1659, Houston

    Google Scholar 

  • Stopar JD, Hawke BR, Robinson MS, Giguere TA (2013) Impact melt burial and degradation through crater modification in simple lunar craters. 44th Lunar Planet Sci Conf, abstract #1772, Houston

    Google Scholar 

  • Strom RG, Fielder G (1968) Multiphase development of the lunar crater Tycho. Nature 217:611–615

    Article  Google Scholar 

  • Tornabene LL, Osinski GR, McEwen AS, Boyce JM, Bray VJ, Caudill CM, Grant JA, Hamilton CW, Mattson S, Mouginis-Mark PJ (2012) Widespread crater-related pitted materials on Mars: further evidence for the role of target volatiles during the impact process. Icarus 220:348–368

    Article  Google Scholar 

  • van der Bogert CH, Hiesinger H, McEwen AS, Dundas C, Bray V, Robinson MS, Plescia JB, Reiss D, Klemm K, The LROC Team (2010) Discrepancies between crater size-frequency distributions on ejecta and impact melt pools at lunar craters: an effect of different target properties? 41st Lunar Planet Sci Conf, abstract #2165, Houston

    Google Scholar 

  • van der Bogert CH, Hiesinger H, Krüger T, McEwen AS, Dundas C (2013) New evidence for target property influence on crater size-frequency distribution measurements. 44th Lunar Planet Sci Conf, abstract #1962, Houston

    Google Scholar 

  • Xiao Z, Zeng Z, Ding N, Molaro J (2013) Mass wasting features on the Moon – how active is the lunar surface? Earth Planet Sci Lett 376:1–11

    Article  Google Scholar 

  • Zanetti M, Stadermann A, Krüger T, van der Bogert CH, Hiesinger H, Jolliff B (2014), Mapping crater density variation on Copernican ejecta blankets: evidence for auto-secondary cratering at Tycho and Aristarchus. 45th Lunar Planet Sci Conf, abstract #1528, Houston

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julie D. Stopar .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Stopar, J.D., van der Bogert, C.H. (2014). Impact Melt Pond. In: Encyclopedia of Planetary Landforms. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9213-9_236-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9213-9_236-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-9213-9

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics