Impact Melt Pond

  • Julie D. Stopar
  • Carolyn H. van der Bogert
Living reference work entry


An impact melt pond is a flat-lying coherent deposit of impact melt-rich rock that settled under the influence of gravity in a topographic depression while molten.



Impact-generated melt can form a ponded deposit with a level surface by flowing from topographic highs into lower basins, including small closed depressions. The impact melt rock in a ponded deposit may be relatively free of granular debris, or it may be a mixture of melt and lesser particulate clasts. Depending on the volume of melt, the viscosity and flow of melt, and the availability and size of local depressions, impact melt ponds range from small local features (e.g., localized deposits in terraced crater walls) to large-scale deposits (e.g., occupying a crater floor).


Extensive reviews of the impact cratering process and its relationship to shock-induced melting can be found in Melosh (1989), French (1998), and Osinski and Pierazzo (2013)....


Debris Flow Impact Crater Crater Wall Crater Floor Lunar Crater 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. Abramov O, Kring DA (2005) Impact-induced hydrothermal activity on early Mars. J Geophys Res Planet. doi:10.1029/2005JE002453Google Scholar
  2. Ashley JW, Robinson MS, Hawke BR, van der Bogert CH, Hiesinger H, Sato H, Speyerer EJ, Enns AC, Wagner EV, Young KE, Burns KN (2012) Geology of the King Crater region – new insights into impact melt dynamics on the Moon. J Geophys Res Planet. doi:10.1029/2011JE003990Google Scholar
  3. Basilevsky AT (1976) On the evolution rate of small lunar craters. Proc 7th Lunar Sci Conf, Geochim Cosmochim Acta Suppl 7:1005–1020Google Scholar
  4. Beach MJ, Head JW, Ostrach LR, Robinson MS, Denevi BW, Solomon SC (2012) The influence of pre-existing topography on the distribution of impact melt on Mercury. 43rd Lunar Planet Sci Conf, abstract #1335, HoustonGoogle Scholar
  5. Bray VJ, Tornabene LL, Keszthelyi LP, McEwen AS, Hawke BR, Giguere TA, Kattenhorn SA, Garry WB, Rizk B, Caudill CM, Gaddis LR, van der Bogert CH (2010) New insight into lunar impact melt mobility from the LRO camera. Geophys Res Lett. doi:10.1029/2010GL044666Google Scholar
  6. Chadwick DJ, Schaber GG (1993) Impact crater outflows on Venus: morphology and emplacement mechanisms. J Geophys Res Planet 98:20891–20902CrossRefGoogle Scholar
  7. Chanou A, Tornabene LL, Osinski GR, Zanetti M, Pickersgill AE, Shankar B, Marion C, Mader MM, Souders KA, Sylvester P, Jolliff BL, Shaver C (2012) Impact melt-pond scenario tested during the KRASH 2011 analogue mission at Kamestastin impact structure. 43rd Lunar Planet Sci Conf, abstract #2580, HoustonGoogle Scholar
  8. Cintala JM, Grieve RAF (1998) Scaling impact melting and crater dimensions: implications for the lunar cratering record. Met Planet Sci. 33(4):889–912. doi:10.1111/j.1945-5100.1998.tb01695.xGoogle Scholar
  9. Denevi BW, Blewett DT, Buczkowski DL, Capaccioni F, Capria MT, Sanctis MCD, Garry WB, Gaskell RW, Corre LL, Li J-Y, Marchi S, McCoy TJ, Nathues A, O’Brien DP, Petro NE, Pieters CM, Preusker F, Raymond CA, Reddy V, Russell CT, Schenk P, Scully JEC, Sunshine JM, Tosi F, Williams DA, Wyrick D (2012) Pitted Terrain on Vesta and implications for the presence of volatiles. Science 338:246–249CrossRefGoogle Scholar
  10. French BM (1998) Traces of catastrophe. LPI contribution no. 954Google Scholar
  11. Gault DE, Quaide WL, Oberbeck VR (1968) Impact cratering mechanics and structures. In: French BM, Short NM (eds) Shock metamorphism of natural materials. Mono Book Corporation, Baltimore, pp 87–99Google Scholar
  12. Grieve RAF, Cintala MJ (1995) Impact melting on Venus: some considerations for the nature of the cratering record. Icarus 114:68–79CrossRefGoogle Scholar
  13. Grieve RAF, Cintala MJ (1997) Planetary differences in impact melting. Adv Space Res 20(8):1551–1560CrossRefGoogle Scholar
  14. Grieve RAF, Dence MR, Robertson PB (1977) Cratering processes: as interpreted from the occurrence of impact melts. In: Roddy DJ, Pepin RO, Merrill RB (eds) Impact and explosion cratering. Pergamon Press, New York, pp 791–814Google Scholar
  15. Hartmann WK (1968) Lunar crater counts. VI: the young craters Tycho, Aristarchus, and Copernicus. Lunar Planet Lab Commun 8:145–156Google Scholar
  16. Hawke BR, Head JW (1977) Impact melt on lunar crater rims. In: Impact and explosion cratering: planetary and terrestrial implications. Proceedings of the symposium on planetary cratering mechanics, Flagstaff, 13–17 Sept 1976. Pergamon Press, New York, pp 815–841Google Scholar
  17. Hawke BR, Head JW (1992) The distribution and modes of occurrence of impact melt at lunar craters. In: International conference on large meteorite impacts and planetary evolution, Sudbury, Ontario, Canada, pp 37–38Google Scholar
  18. Head JW (1975) Processes of lunar crater degradation: changes in style with geologic time. Moon 12:299–329CrossRefGoogle Scholar
  19. Hiesinger H, van der Bogert CH, Pasckert JH, Funcke L, Giacomini L, Ostrach LR, Robinson MS (2012) How old are young lunar craters? J Geophys Res Planet. doi:10.1029/2011JE003935Google Scholar
  20. Hörz F, Cintala M (1997) The Barringer Award address presented 1996 July 25, Berlin, Germany: impact experiments related to the evolution of planetary regoliths. Meteorit Planet Sci 32:179–209CrossRefGoogle Scholar
  21. Hörz F, Hartung JB, Gault DE (1971) Micrometeorite craters on lunar rock surfaces. J Geophys Res 76:5770–5798CrossRefGoogle Scholar
  22. Howard KA, Wilshire HG (1975) Flows of impact melt at lunar craters. J Res Geol Surv 3:237–251Google Scholar
  23. Krüger T, van der Bogert CH, Hiesinger H (2013) New high-resolution melt distribution map and topographic analysis of Tycho crater. 44th Lunar Planet Sci Conf, abstract #2152, HoustonGoogle Scholar
  24. Melosh HJ (1989) Impact cratering: a geologic process. Oxford University Press, New York, p 245Google Scholar
  25. Melosh HJ, Ivanov BA (1999) Impact crater collapse. Annu Rev Earth Planet Sci 27:385–415CrossRefGoogle Scholar
  26. Morris AR, Mouginis-Mark PJ, Garbeil H (2010) Possible impact melt and debris flows at Tooting Crater, Mars. Icarus 209:369–389CrossRefGoogle Scholar
  27. Oberbeck VR (1975) The role of ballistic erosion and sedimentation in lunar stratigraphy. Rev Geophys 13:337–362CrossRefGoogle Scholar
  28. Osinski G, Pierazzo RE (2013) Impact cratering: processes and products. Wiley-Blackwell, Chichester, p 316Google Scholar
  29. Osinski GR, Grieve RAF, Spray JG (2004) The nature of the groundmass of surficial suevite from the Ries impact structure, Germany, and constraints on its origin. Meteorit Planet Sci 39:1655–1683CrossRefGoogle Scholar
  30. Osinski GR, Lee P, Spray JG, Parnell J, Lim DSS, Bunch TE, Cockell CS, Glass B (2005) Geological overview and cratering model for the Haughton impact structure, Devon Islands, Canadian High Arctic. Meteorit Planet Sci 40:1759–1776CrossRefGoogle Scholar
  31. Osinski GR, Grieve RAF, Collins GS, Marion C, Sylvester P (2003) The effect of target lithology on the products of impact melting. Meteorit Planet Sci 43:1939–1954CrossRefGoogle Scholar
  32. Osinski GR, Tornabene LL, Grieve RAF (2011) Impact ejecta emplacement on terrestrial planets, Earth and Planetary Sci. Lett. 310:167–181Google Scholar
  33. Osinski GR, Grieve RAF, Marion C, Chanou A (2013) Impact melting. In: Osinski GR, Pierazzo E (eds) Impact cratering: processes and products. Wiley-Blackwell, Chichester, pp 125–145Google Scholar
  34. Osinski GR, Tornabene LL, Sears DWG, Hughes SS, Heldmann JL (2014) Impact craters as probes of fluids on differentiated bodies. 45th Lunar Planet Sci Conf, abstract #2439, HoustonGoogle Scholar
  35. Pierazzo E, Melosh HJ (2000) Melt production in oblique impacts. Icarus 145:252–261CrossRefGoogle Scholar
  36. Plescia JB, Cintala MJ (2012) Impact melt in small lunar highland craters. J Geophys Res Planet. doi:10.1029/2011JE003941Google Scholar
  37. Plescia JB, Robinson MS, Paige DA (2010) Giordano Bruno: the young and the restless. 41st Lunar Planet Sci Conf, abstract #203, HoustonGoogle Scholar
  38. Pope KO, Kieffer SW, Ames DE (2006) Impact melt sheet formation on Mars and its implication for hydrothermal systems and exobiology. Icarus 183:1–9CrossRefGoogle Scholar
  39. Robinson MS, Ashley JW, Boyd AK, Wagner RV, Speyerer EJ, Hawke BR, Hiesinger H, van der Bogert CH (2012) Confirmation of sublunarean voids and thin layering in mare deposits. Planet Space Sci 69:18–27CrossRefGoogle Scholar
  40. Schon SC, Head JW, Baker DMH, Ernst CM, Prockter LM, Murchie SL, Solomon SC (2011) Eminescu impact structure: insight into the transition from complex crater to peak-ring basin on Mercury. Planet Space Sci 59:1949–1959CrossRefGoogle Scholar
  41. Schultz PH, Spencer J (1979) Effects of substrate strength on crater statistics: implications for surface ages and gravity scaling. Proc 10th Lunar Planet Sci Conf, Geochim Cosmochim Acta Suppl 11:1081–1083Google Scholar
  42. Shoemaker EM, Batson RM, Holt HE, Morris EC, Rennilson JJ, Whitaker EA (1968) Television observations from surveyor VII. In: Surveyor VII mission report, part II. Science results. JPL technical report 32-1264. pp 9–76Google Scholar
  43. Stopar JD, Hawke BR, Robinson MS, Denevi BW, Giguere TA (2012) Distribution, occurrence, and degradation of impact melt associated with small lunar craters. 43rd Lunar Planet Sci Conf, abstract #1659, HoustonGoogle Scholar
  44. Stopar JD, Hawke BR, Robinson MS, Giguere TA (2013) Impact melt burial and degradation through crater modification in simple lunar craters. 44th Lunar Planet Sci Conf, abstract #1772, HoustonGoogle Scholar
  45. Strom RG, Fielder G (1968) Multiphase development of the lunar crater Tycho. Nature 217:611–615CrossRefGoogle Scholar
  46. Tornabene LL, Osinski GR, McEwen AS, Boyce JM, Bray VJ, Caudill CM, Grant JA, Hamilton CW, Mattson S, Mouginis-Mark PJ (2012) Widespread crater-related pitted materials on Mars: further evidence for the role of target volatiles during the impact process. Icarus 220:348–368CrossRefGoogle Scholar
  47. van der Bogert CH, Hiesinger H, McEwen AS, Dundas C, Bray V, Robinson MS, Plescia JB, Reiss D, Klemm K, The LROC Team (2010) Discrepancies between crater size-frequency distributions on ejecta and impact melt pools at lunar craters: an effect of different target properties? 41st Lunar Planet Sci Conf, abstract #2165, HoustonGoogle Scholar
  48. van der Bogert CH, Hiesinger H, Krüger T, McEwen AS, Dundas C (2013) New evidence for target property influence on crater size-frequency distribution measurements. 44th Lunar Planet Sci Conf, abstract #1962, HoustonGoogle Scholar
  49. Xiao Z, Zeng Z, Ding N, Molaro J (2013) Mass wasting features on the Moon – how active is the lunar surface? Earth Planet Sci Lett 376:1–11CrossRefGoogle Scholar
  50. Zanetti M, Stadermann A, Krüger T, van der Bogert CH, Hiesinger H, Jolliff B (2014), Mapping crater density variation on Copernican ejecta blankets: evidence for auto-secondary cratering at Tycho and Aristarchus. 45th Lunar Planet Sci Conf, abstract #1528, HoustonGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.School of Earth and Space ExplorationArizona State UniversityTempeUSA
  2. 2.Institut für Planetologie, Westfälische Wilhelms-Universität MünsterMünsterGermany