Skip to main content

Lacustrine Features (Mars)

  • Living reference work entry
  • First Online:
Encyclopedia of Planetary Landforms

Definition

Sites of putative long-standing bodies of water on Mars.

Synonyms

Lacustrine plains; Paleolake basin

Description

Flat regions in commonly breached closed or open depressions or topographic lows.

Morphometry

Open-basin lake area ranges between ∼2 and ∼500,000 km2 (Fassett and Head 2008).

Subtypes

Subtypes of lacustrine features in relation to associated observable valley(s):

  1. (1)

    Open-basin lake (Cabrol and Grin 1999): possible lake where outlet is observed. Water must have ponded to the “level of the surface adjacent to the outlet valley head before breaching and overflowing the basin, requiring a period of sustained fluvial activity on the surface of Mars” (Fassett and Head 2008; Goudge et al. 2012).

    1. (1.1)

      A basin where both inlet and outlet valley are observed, i.e., located along a drainage course, is described as intra-valley basin (De Hon 1992; Fig. 1).

    2. (1.2)

      A basin at the head of a valley is a valley-head basin (De Hon 1992).

    ...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Aureli KL, Head JW, Goudge TA, Fassett CI (2013) An analysis of candidate closed-basin lakes in impact craters on Mars. 44th Lunar Planet Sci Conf, abstract #1244, Houston

    Google Scholar 

  • Bibring J-P et al (2005) Mars surface diversity as revealed by the OMEGA/Mars express observations. Science 307:1576–1581. doi:10.1126/science.1108806

    Article  Google Scholar 

  • Bibring J-P et al (2006) Global mineralogical and aqueous Mars history derived from OMEGA/Mars express data. Science 312(5772):400–404. doi:10.1126/science.1122659

    Article  Google Scholar 

  • Bristow TF, Milliken RE (2011) Terrestrial perspective on authigenic clay mineral production in ancient Martian lakes. Clays Clay Miner 59(4):339–358

    Article  Google Scholar 

  • Cabrol NA, Grin EA (1999) Distribution, classification, and ages of Martian impact crater lakes. Icarus 142:160–172

    Article  Google Scholar 

  • Cabrol NA, Grin EA (2000) Lacustrine deltas in Martian impact craters: morphologies, types, and significance. Lunar Planet Sci Conf XXXI, abstract #1162, Houston

    Google Scholar 

  • Cabrol NA, Grin EA (eds) (2010) Lakes on Mars. Elsevier, Amsterdam, p 390

    Google Scholar 

  • Carr MH, Head JW III (2003) Oceans on Mars: an assessment of the observational evidence and possible fate. J Geophys Res 108(E5):5042. doi:10.1029/2002JE001963

    Article  Google Scholar 

  • Chan MA, Nicoll K, Jewell PW, Parker TJ, Bulls BG, Okubo CH, Komatsu G (2010) Geomorphic evolution of pleistocene Lake Bonneville: temporal implications for surface processes on Mars. First international conference on Mars sedimentology and stratigraphy #6016

    Google Scholar 

  • Clifford SM, Parker TJ (2001) The evolution of the Martian hydrosphere: implications for the fate of a primordial ocean and the current state of the northern plains. Icarus 154:40–79

    Article  Google Scholar 

  • Daubar IJ, Kring DA (2001) Impact-induced hydrothermal systems: heat sources and lifetimes. 32th Lunar Planet Sci Conf, abstract #1727, Houston

    Google Scholar 

  • De Hon RA (1992) Martian lake basins and lacustrine plains. Earth Moon Planets 56:95–122

    Article  Google Scholar 

  • De Hon RA, Pani EA (1992) Flood surge through the Lunae Planum outflow complex. 22nd Lunar Planet Sci, 63–71, Houston

    Google Scholar 

  • Di Achille G, Ori GG (2008) Complex intermontaine glacial systems in Arabia Terra, Mars: evidence for an Amazonian proglacial lake with associated glacilacustrine deposits. 39th Lunar Planet Sci Conf, abstract #2096, Houston

    Google Scholar 

  • Ehlmann BL et al (2008) Clay minerals in delta deposits and organic preservation potential on Mars. Nat Geosci 1:355–358

    Article  Google Scholar 

  • El Maarry MR, Markiewicz W, Mellon M, Goetz W (2010) Crater floor polygons (cfps): signs of desiccated paleolakes on Mars? Lunar Planet Sci Conf 41, abstract #1650, Houston

    Google Scholar 

  • Fassett CI, Head JW (2008) Valley network-fed, open-basin lakes on Mars: distribution and implications for Noachian surface and subsurface hydrology. Icarus 198:37–56

    Article  Google Scholar 

  • Forsythe RD, Blackwelder JR (1998) Closed drainage crater basins of the Martian highlands: constraints on the early Martian hydrologic cycle. J Geophys Res 103(E13):31421–31431

    Article  Google Scholar 

  • Goldspiel JM, Squyres SW (1991) Ancient aqueous sedimentation on Mars. Icarus 89:392–410. doi:10.1016/0019-1035(91)90186-W

    Article  Google Scholar 

  • Goudge TA, Head JW, Mustard JF, Fassett CI (2012) An analysis of open-basin lake deposits on Mars: evidence for the nature of associated lacustrine deposits and post-lacustrine modification processes. Icarus 219(1):211–229

    Article  Google Scholar 

  • Grant JA, Irwin RP, Wilson SA (2010) Aqueous depositional settings in Holden Crater, Mars. In: Cobrol NA, Grin EA (eds) Lakes on Mars. Elsevier, Amsterdam, pp 323–346

    Chapter  Google Scholar 

  • Irwin RP, Howard AD, Maxwell TA (2004) Geomorphology of Ma’adim Vallis, Mars, and associated paleolake basins. J Geophys Res 109:E12009. doi:10.1029/2004JE002287

    Article  Google Scholar 

  • Irwin RP III, Howard AD, Craddock RA, Moore JM (2005) An intense terminal epoch of widespread fluvial activity on early Mars: 2. Increased runoff and paleolake development. J Geophys Res 110, E12S15. doi:10.1029/2005JE002460

    Google Scholar 

  • Kargel JS, Baker VR, Begét JE, Lockwood JF, Péwé TL, Shaw JS, Strom RG (1995) Evidence of ancient continental glaciation in the Martian northern plains. J Geophys Res 100(E3):5351–5368. doi:10.1029/94JE02447

    Article  Google Scholar 

  • Kereszturi A (2010) Lakes beyond the Earth: dry lakebeds on Mars, and active methane-ethane lakes on Titan. In: Meyer PL (ed) Ponds: formation, characteristics, and uses. Nova, New York, pp 125–138

    Google Scholar 

  • Klingelhöfer G et al (2004) Jarosite and hematite at Meridiani Planum from opportunity’s Mössbauer spectrometer. Science 306:1740–1745

    Article  Google Scholar 

  • Kreslavsky MA, Head JW (2002) Fate of outflow channel effluents in the northern lowlands of Mars: the Vastitas Borealis formation as a sublimation residue from frozen ponded bodies of water. J Geophys Res 107(E12):5121. doi:10.1029/2001JE001831

    Article  Google Scholar 

  • Leverington DW, Maxwell TA (2004) An igneous origin for features of a candidate crater-lake system in western Memnonia, Mars. J Geophys Res 109:E06006. doi:10.1029/2004JE002237

    Google Scholar 

  • Moore JM, Wilhelms DE (2001) Hellas as a possible site of ancient ice-covered lakes on Mars. Icarus 154(2):258–276

    Article  Google Scholar 

  • Moore JM, Clow GD, Davis WL, Gulick VC, Janke DR, McKay CP, Stoker CR, Zent AP (1995) The circum-Chryse region as a possible example of a hydrologic cycle on Mars: geologic observations and theoretical evaluation. J Geophys Res 100:5433–5447

    Article  Google Scholar 

  • Newsom HE, Brittelle GE, Hibbitts CA, Crossey LJ, Kudo AM (1996) Impact crater lakes on Mars. J Geophys Res 101(E6):14951–14955. doi:10.1029/96JE01139

    Article  Google Scholar 

  • Newsom HE, Barber CA, Hare TM, Schelble RT, Sutherland VA, Feldman WC (2003) Paleolakes and impact basins in southern Arabia Terra, including Meridiani Planum: implications for the formation of hematite deposits on Mars. J Geophys Res 108(E12):8075. doi:10.1029/

    Article  Google Scholar 

  • Ori GG, Marinangeli L, Baliva A (2000) Terraces and Gilbert-type deltas in crater lakes in Ismenius Lacus and Memnonia (Mars). J Geophys Res 105(E7):17629–17641

    Article  Google Scholar 

  • Pacifici A, Komatsu G, Pondrelli M (2009) Geological evolution of Ares Vallis on Mars: formation by multiple events of catastrophic flooding, glacial and periglacial processes. Icarus. doi:10.1016/j.icarus.2009.02.029

    Google Scholar 

  • Scott DH, Chapman MG, Rice JW Jr, Dohm JM (1992) New evidence of lacustrine basins on Mars – Amazonis and Utopia Planitiae. Lunar Planet Sci 22:53–62, Houston

    Google Scholar 

  • Scott DH, Dohm JM, Rice JM (1995) Map of Mars showing channels and possible paleolakes basins (1:30,000,000) US Geol Surv Misc Inves Map I-2461

    Google Scholar 

  • Soare RJ, Osinski GR, Roehm CL (2008) Thermokarst lakes and ponds on Mars in the very recent (late Amazonian) past. Earth Planet Sci Lett 272(1–2):382–393

    Article  Google Scholar 

  • Soare RJ, Conway SJ, Pearce GD, Dohm JM, Grindrod PM (2013) Possible crater-based pingos, paleolakes and periglacial landscapes at the high latitudes of Utopia Planitia, Mars. Icarus 225(2):971–981

    Article  Google Scholar 

  • Warner NH, Sowe M, Gupta S, Dumke A, Goddard K (2013) Fill and spill of giant lakes in the eastern Valles Marineris region of Mars. Geology 41(6):675–678

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ákos Kereszturi .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Kereszturi, Á., De Hon, R. (2014). Lacustrine Features (Mars). In: Encyclopedia of Planetary Landforms. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9213-9_212-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9213-9_212-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-9213-9

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics