Lacustrine Features (Mars)

  • Ákos Kereszturi
  • Rene De Hon
Living reference work entry


Sites of putative long-standing bodies of water on Mars.



Flat regions in commonly breached closed or open depressions or topographic lows.


Open-basin lake area ranges between ∼2 and ∼500,000 km2 (Fassett and Head 2008).


Subtypes of lacustrine features in relation to associated observable valley(s):
  1. (1)
    Open-basin lake (Cabrol and Grin 1999): possible lake where outlet is observed. Water must have ponded to the “level of the surface adjacent to the outlet valley head before breaching and overflowing the basin, requiring a period of sustained fluvial activity on the surface of Mars” (Fassett and Head 2008; Goudge et al. 2012).
    1. (1.1)

      A basin where both inlet and outlet valley are observed, i.e., located along a drainage course, is described as intra-valley basin (De Hon 1992; Fig. 1).

    2. (1.2)

      A basin at the head of a valley is a valley-head basin (De Hon 1992).

  2. (2)

    Closed-basin lake (Cabrol and...


Crater Lake Impact Crater Lacustrine Basin Thermokarst Lake Lacustrine Plain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. Aureli KL, Head JW, Goudge TA, Fassett CI (2013) An analysis of candidate closed-basin lakes in impact craters on Mars. 44th Lunar Planet Sci Conf, abstract #1244, HoustonGoogle Scholar
  2. Bibring J-P et al (2005) Mars surface diversity as revealed by the OMEGA/Mars express observations. Science 307:1576–1581. doi:10.1126/science.1108806CrossRefGoogle Scholar
  3. Bibring J-P et al (2006) Global mineralogical and aqueous Mars history derived from OMEGA/Mars express data. Science 312(5772):400–404. doi:10.1126/science.1122659CrossRefGoogle Scholar
  4. Bristow TF, Milliken RE (2011) Terrestrial perspective on authigenic clay mineral production in ancient Martian lakes. Clays Clay Miner 59(4):339–358CrossRefGoogle Scholar
  5. Cabrol NA, Grin EA (1999) Distribution, classification, and ages of Martian impact crater lakes. Icarus 142:160–172CrossRefGoogle Scholar
  6. Cabrol NA, Grin EA (2000) Lacustrine deltas in Martian impact craters: morphologies, types, and significance. Lunar Planet Sci Conf XXXI, abstract #1162, HoustonGoogle Scholar
  7. Cabrol NA, Grin EA (eds) (2010) Lakes on Mars. Elsevier, Amsterdam, p 390Google Scholar
  8. Carr MH, Head JW III (2003) Oceans on Mars: an assessment of the observational evidence and possible fate. J Geophys Res 108(E5):5042. doi:10.1029/2002JE001963CrossRefGoogle Scholar
  9. Chan MA, Nicoll K, Jewell PW, Parker TJ, Bulls BG, Okubo CH, Komatsu G (2010) Geomorphic evolution of pleistocene Lake Bonneville: temporal implications for surface processes on Mars. First international conference on Mars sedimentology and stratigraphy #6016Google Scholar
  10. Clifford SM, Parker TJ (2001) The evolution of the Martian hydrosphere: implications for the fate of a primordial ocean and the current state of the northern plains. Icarus 154:40–79CrossRefGoogle Scholar
  11. Daubar IJ, Kring DA (2001) Impact-induced hydrothermal systems: heat sources and lifetimes. 32th Lunar Planet Sci Conf, abstract #1727, HoustonGoogle Scholar
  12. De Hon RA (1992) Martian lake basins and lacustrine plains. Earth Moon Planets 56:95–122CrossRefGoogle Scholar
  13. De Hon RA, Pani EA (1992) Flood surge through the Lunae Planum outflow complex. 22nd Lunar Planet Sci, 63–71, Houston Google Scholar
  14. Di Achille G, Ori GG (2008) Complex intermontaine glacial systems in Arabia Terra, Mars: evidence for an Amazonian proglacial lake with associated glacilacustrine deposits. 39th Lunar Planet Sci Conf, abstract #2096, HoustonGoogle Scholar
  15. Ehlmann BL et al (2008) Clay minerals in delta deposits and organic preservation potential on Mars. Nat Geosci 1:355–358CrossRefGoogle Scholar
  16. El Maarry MR, Markiewicz W, Mellon M, Goetz W (2010) Crater floor polygons (cfps): signs of desiccated paleolakes on Mars? Lunar Planet Sci Conf 41, abstract #1650, HoustonGoogle Scholar
  17. Fassett CI, Head JW (2008) Valley network-fed, open-basin lakes on Mars: distribution and implications for Noachian surface and subsurface hydrology. Icarus 198:37–56CrossRefGoogle Scholar
  18. Forsythe RD, Blackwelder JR (1998) Closed drainage crater basins of the Martian highlands: constraints on the early Martian hydrologic cycle. J Geophys Res 103(E13):31421–31431CrossRefGoogle Scholar
  19. Goldspiel JM, Squyres SW (1991) Ancient aqueous sedimentation on Mars. Icarus 89:392–410. doi:10.1016/0019-1035(91)90186-WCrossRefGoogle Scholar
  20. Goudge TA, Head JW, Mustard JF, Fassett CI (2012) An analysis of open-basin lake deposits on Mars: evidence for the nature of associated lacustrine deposits and post-lacustrine modification processes. Icarus 219(1):211–229CrossRefGoogle Scholar
  21. Grant JA, Irwin RP, Wilson SA (2010) Aqueous depositional settings in Holden Crater, Mars. In: Cobrol NA, Grin EA (eds) Lakes on Mars. Elsevier, Amsterdam, pp 323–346CrossRefGoogle Scholar
  22. Irwin RP, Howard AD, Maxwell TA (2004) Geomorphology of Ma’adim Vallis, Mars, and associated paleolake basins. J Geophys Res 109:E12009. doi:10.1029/2004JE002287CrossRefGoogle Scholar
  23. Irwin RP III, Howard AD, Craddock RA, Moore JM (2005) An intense terminal epoch of widespread fluvial activity on early Mars: 2. Increased runoff and paleolake development. J Geophys Res 110, E12S15. doi:10.1029/2005JE002460Google Scholar
  24. Kargel JS, Baker VR, Begét JE, Lockwood JF, Péwé TL, Shaw JS, Strom RG (1995) Evidence of ancient continental glaciation in the Martian northern plains. J Geophys Res 100(E3):5351–5368. doi:10.1029/94JE02447CrossRefGoogle Scholar
  25. Kereszturi A (2010) Lakes beyond the Earth: dry lakebeds on Mars, and active methane-ethane lakes on Titan. In: Meyer PL (ed) Ponds: formation, characteristics, and uses. Nova, New York, pp 125–138Google Scholar
  26. Klingelhöfer G et al (2004) Jarosite and hematite at Meridiani Planum from opportunity’s Mössbauer spectrometer. Science 306:1740–1745CrossRefGoogle Scholar
  27. Kreslavsky MA, Head JW (2002) Fate of outflow channel effluents in the northern lowlands of Mars: the Vastitas Borealis formation as a sublimation residue from frozen ponded bodies of water. J Geophys Res 107(E12):5121. doi:10.1029/2001JE001831CrossRefGoogle Scholar
  28. Leverington DW, Maxwell TA (2004) An igneous origin for features of a candidate crater-lake system in western Memnonia, Mars. J Geophys Res 109:E06006. doi:10.1029/2004JE002237Google Scholar
  29. Moore JM, Wilhelms DE (2001) Hellas as a possible site of ancient ice-covered lakes on Mars. Icarus 154(2):258–276CrossRefGoogle Scholar
  30. Moore JM, Clow GD, Davis WL, Gulick VC, Janke DR, McKay CP, Stoker CR, Zent AP (1995) The circum-Chryse region as a possible example of a hydrologic cycle on Mars: geologic observations and theoretical evaluation. J Geophys Res 100:5433–5447CrossRefGoogle Scholar
  31. Newsom HE, Brittelle GE, Hibbitts CA, Crossey LJ, Kudo AM (1996) Impact crater lakes on Mars. J Geophys Res 101(E6):14951–14955. doi:10.1029/96JE01139CrossRefGoogle Scholar
  32. Newsom HE, Barber CA, Hare TM, Schelble RT, Sutherland VA, Feldman WC (2003) Paleolakes and impact basins in southern Arabia Terra, including Meridiani Planum: implications for the formation of hematite deposits on Mars. J Geophys Res 108(E12):8075. doi:10.1029/CrossRefGoogle Scholar
  33. Ori GG, Marinangeli L, Baliva A (2000) Terraces and Gilbert-type deltas in crater lakes in Ismenius Lacus and Memnonia (Mars). J Geophys Res 105(E7):17629–17641CrossRefGoogle Scholar
  34. Pacifici A, Komatsu G, Pondrelli M (2009) Geological evolution of Ares Vallis on Mars: formation by multiple events of catastrophic flooding, glacial and periglacial processes. Icarus. doi:10.1016/j.icarus.2009.02.029Google Scholar
  35. Scott DH, Chapman MG, Rice JW Jr, Dohm JM (1992) New evidence of lacustrine basins on Mars – Amazonis and Utopia Planitiae. Lunar Planet Sci 22:53–62, HoustonGoogle Scholar
  36. Scott DH, Dohm JM, Rice JM (1995) Map of Mars showing channels and possible paleolakes basins (1:30,000,000) US Geol Surv Misc Inves Map I-2461Google Scholar
  37. Soare RJ, Osinski GR, Roehm CL (2008) Thermokarst lakes and ponds on Mars in the very recent (late Amazonian) past. Earth Planet Sci Lett 272(1–2):382–393CrossRefGoogle Scholar
  38. Soare RJ, Conway SJ, Pearce GD, Dohm JM, Grindrod PM (2013) Possible crater-based pingos, paleolakes and periglacial landscapes at the high latitudes of Utopia Planitia, Mars. Icarus 225(2):971–981CrossRefGoogle Scholar
  39. Warner NH, Sowe M, Gupta S, Dumke A, Goddard K (2013) Fill and spill of giant lakes in the eastern Valles Marineris region of Mars. Geology 41(6):675–678CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Konkoly Thege Miklos Astronomical InstituteResearch Center for Astronomy and Earth SciencesBudapestHungary
  2. 2.Department of GeographyTexas State UniversitySan MarcosUSA