Intercrater Plains

  • David A. Rothery
  • Ákos Kereszturi
Living reference work entry
DOI: https://doi.org/10.1007/978-1-4614-9213-9_197-1

Definition

Plains on Mercury and other bodies that show fewer craters than the oldest terrains on the planet (heavily cratered terrain) but which are more cratered (and so are older) than smooth plains

Note

Intercrater plains are a terrain mapping unit on Mercury. Any plains units between craters could be also called as intercrater plains on Mars (Kadish et al. 2009; Murchie et al. 2009; Wray et al. 2011) or the Moon (Leake 1982; Hartmann 1995) as a purely descriptive term.

Description

Intercrater plains on Mercury (Fig. 1) form a nearly level or rolling surfaces covering about 40 % of the planet. Intercrater plains resemble smooth plains in color and reflectance and probably have broadly similar composition (Denevi et al. 2009). Preliminary X-ray fluorescence data from MESSENGER show a higher Mg/Si ratio for intercrater plains than for smooth plains and considerably higher than for terrestrial or lunar lavas (Weider et al. 2012). The high Mg/Si and low Fe/Si ratios (Nittler et al. 2011...

Keywords

Impact Crater Plain Material Lunar Maria Late Heavy Bombardment Lunar Highland 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.

References

  1. Blewett DT, Robinson MS, Denevi BW, Gillis-Davis JJ, Head JW, Solomon SC, Holsclaw GM, McClintock WE (2009) Multispectral images of Mercury from the first MESSENGER flyby: Analysis of global and regional color trends. Earth Planet. Sci. Lett. 285:272–282CrossRefGoogle Scholar
  2. Denevi DW, Robinson MS, Solomon SC, Murchie SL, Blewett DT, Domingue DL, McCoy TJ, Ernst CM, Head JW, Watter TR, Chabot NL (2009) The evolution of Mercury’s crust: a global perspective from MESSENGER. Science 324:613–618Google Scholar
  3. Grolier MJ, Boyce JM (1984) Geologic map of the Borealis Region (H – 1) of Mercury. USGS Miscellaneous Investigations Series Map I-1660. USGS (United States Geological Survey), Flagstaff, ArizonaGoogle Scholar
  4. Hartmann W (1984) Does crater “saturation equilibrium” occur in the solar system? Icarus 60:56–74CrossRefGoogle Scholar
  5. Hartmann W (1995) Planetary cratering I: lunar highlands and tests of hypotheses on crater populations. Meteoritics 30:451CrossRefGoogle Scholar
  6. Head JW, Murchie SL, Prockter LM, Solomon SC, Chapman CR, Strom RG, Watters TR, Blewett DT, Gillis-Davis JJ, Fassett CI, Dickson JL, Morgan GA, Kerber L (2008) Volcanism on mercury: evidence from the first MESSENGER flyby for extrusive and explosive activity and the volcanic origin of plains. Earth Planet Sci Lett 285:227–242CrossRefGoogle Scholar
  7. Kadish SJ, Barlow NG, Head JW (2009) Latitude dependence of Martian pedestal craters: evidence for a sublimation-driven formation mechanism. J Geophys Res 114(E10). CiteID E10001Google Scholar
  8. Leake MA (1982) The intercrater plains of Mercury and the Moon: their nature, origin and role in terrestrial planet evolution. Chronology of surface history of the Moon. In NASA, Washington Advanced in Planetary Geology, pp 505–507Google Scholar
  9. Malin MC (1976) Observations of intercrater plains on Mercury. Geophys Res Lett 3:581–584CrossRefGoogle Scholar
  10. Murchie SL, Mustard JF, Ehlmann BL, Milliken RE, Bishop JL, McKeown NK, Noe D, Eldar Z, Seelos FP, Buczkowski DL, Wiseman SM, Arvidson RE, Wray JJ, Swayze G, Clark RN, Des Marais DJ, McEwen AS, Bibring J-P (2009) A synthesis of Martian aqueous mineralogy after 1 Mars year of observations from the Mars Reconnaissance Orbiter. J Geophys Res 114(53). CiteID E00D06Google Scholar
  11. Murray B, Strom R, Trask N, Gault D (1975) Surface history of Mercury: implications for terrestrial planets. J Geophys Res 80(17):2508–2514. doi:10.1029/JB080i017p02508CrossRefGoogle Scholar
  12. Nittler LR et al (2011) The major element composition of Mercury’s surface from MESSENGER X-ray spectrometery. Science 333:1847–1850CrossRefGoogle Scholar
  13. Strom RG (1977) Origin and relative age of lunar and Mercurian intercrater plains. Phys Earth Planet Inter 15:156–172CrossRefGoogle Scholar
  14. Strom RG, Banks ME, Chapman CR, Fassett CI, Forde JA, Head JW, Merline WJ, Prockter LM, Solomon SC (2011) Mercury crater statistics from MESSENGER flybys: implications for stratigraphy and resurfacing history. Planet Space Sci 59:1960–1967CrossRefGoogle Scholar
  15. Trask NJ, Guest JE (1975) Preliminary geologic terrain map of Mercury. J Geophys Res 80:2461–2477CrossRefGoogle Scholar
  16. Weider SZ, Nittler LR, Starr RD, McCoy TJ, Stockshill-Cahill KR, Byrne PK, Denevi BW, Head JW, Solomon SC (2012) Chemical heterogeneity on Mercury’s surface revealed by the MESSENGER X-Ray Spectrometer. J Geophys Res 117:E00L05. doi:10.1029/2012JE004153, 10.1029/2012JE004153#Link to external resource: 10.1029/2012JE004153Google Scholar
  17. Wilhelms DE (1976) Mercurian volcanism questioned. Icarus 28:551–558CrossRefGoogle Scholar
  18. Woronow A, Love K (1987) A statistical study of Mercurian crater classes applied to the emplacement of the intercrater plains. NASA, Washington, Reports of Planetary Geology and Geophysics Program 1986, pp 408–410Google Scholar
  19. Wray JJ, Milliken RE, Dundas CM, Swayze GA, Andrews-Hanna JC, Baldridge AM, Chojnacki M, Bishop JL, Ehlmann BL, Murchie SL, Clark RN, Seelos FP, Tornabene LL, Squyres SW (2011) Columbus crater and other possible groundwater-fed paleolakes of Terra Sirenum, Mars. J Geophys Res 116(E1). CiteID E01001Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Physical SciencesOpen UniversityMilton KeynesUK
  2. 2.Konkoly Thege Miklos Astronomical InstituteResearch Center for Astronomy and Earth SciencesBudapestHungary