Grooves (Irregular Body)

Living reference work entry
DOI: https://doi.org/10.1007/978-1-4614-9213-9_183-1

Definition

Linear depressions or troughs that often appear in parallel sets or families, on irregular bodies.

Synonyms

Description

Linear features, variously described as grooves, troughs, striations, lineations, or lineaments, observed on several irregular bodies (e.g., Thomas and Prockter 2010). Grooves are often described as pitted or beaded and are sometimes flanked by raised ridges. Grooves can cover a significant portion of a small body’s surface.

Morphometry

While their characteristics vary, grooves on small bodies are typically 10–20 m deep, 100–200 m wide, and anywhere from 1 km to up to 20 km in length (Veverka and Duxbury 1977; Veverka et al. 1994; Sullivan et al. 1996; Prockter et al. 2001, 2002; Buczkowski et al. 2008; Morrison et al. 2009). Still finer grooves (on the order of 10–20 m in width) have been identified on 433 Eros where the NEAR spacecraft imagery reached resolutions as high as ~5 m/pixel. Grooves up to 15 km wide...

Keywords

Migration Depression Brittle Stein Boulder 
This is a preview of subscription content, log in to check access

References

  1. Basilevsky AT, Oberst J, Willner K, Waelisch M, Neukum G (2011) Grooves of Phobos as seen on rectified images taken by the Mars Express High Resolution Stereo Camera. Lunar Planet Sci Conf 42, abstract #1486, HoustonGoogle Scholar
  2. Buczkowski DL, Barnouin-Jha OS, Prockter LM (2008) 433 Eros lineaments: global mapping and analysis. Icarus 193:39–52CrossRefGoogle Scholar
  3. Dombard AJ, Freed AM (2002) Thermally induced lineations on the Asteroid Eros: evidence of orbit transfer. Geophys Res Lett 29(16). doi:10.1029/2002GL015181Google Scholar
  4. Duxbury T (2011) Possible lunar analogy of the Phobos grooves. EPSC # 6, EPSC-DPS2011-243, EPSC-DPS joint meetingGoogle Scholar
  5. Duxbury T, Robinson M, van der Bogert C, Thomas P, Neukum G, Hiesinger H (2011) Phobos grooves: a lunar analogy. In: ISSI conference, Bern, 30 MarGoogle Scholar
  6. Head JW, Cintala MJ (1979) Grooves on Phobos: evidence for possible secondary cratering origin. In: Reports of the planetary geology program, 1978–1979. NASA technical memorandum, NASA, Washington, DC, vol 80339, pp 19–21Google Scholar
  7. Horstman K, Melosh J (1989) Drainage pits in cohesionless materials: implications for the surface of Phobos. J Geophys Res 94:12433–12441CrossRefGoogle Scholar
  8. Horváth A, Illés-Almár E (2011) Grooves on 21 Lutetia indicate a layered structure. Lunar Planet Sci Conf 42, abstract #1366, HoustonGoogle Scholar
  9. Horváth A, Almár I, Illés-Almár E (2001) Comparison of the surface grooves on Gaspra and Phobos. Adv Sp Res 27(8):1489–1492CrossRefGoogle Scholar
  10. Jaumann R et al (2012) Vesta’s shape and morphology. Science 336(6082):687–690. doi:10.1126/science.1219122CrossRefGoogle Scholar
  11. Morrison SJ, Thomas PC, Tiscareno MS, Burns JA, Veverka J (2009) Grooves on small saturnian satellites and other objects: characteristics and significance. Icarus 204:262–270CrossRefGoogle Scholar
  12. Murray JB (2011) Formation of the grooves of Phobos, in the light of new evidence from Mars Express images. EPSC abstracts 6: EPSC-DPS2011-1003, EPSC-DPS joint meetingGoogle Scholar
  13. Murray JB, Iliffe JC, Muller J-PAL, Neukum G, Werner S, Balme M et al (2006) New evidence on the origin of Phobos’ parallel grooves from HRSC Mars Express. Lunar Planet Sci Conf XXXVII, abstract #2195, HoustonGoogle Scholar
  14. O’Brien DP, Marchi P, Schenk P, Mittlefehldt DW, Jaumann R et al (2012) The impact history of vesta: new views from the dawn mission. Early Sol Syst Impact Bombard II, #4031Google Scholar
  15. Pollack JB, Burns JA (1977) An origin by capture for the Martian satellites? Bull Am Astr Soc 9:518–519Google Scholar
  16. Prockter LM, Thomas PC, Joseph J, Robonson MS, Milne A, Bussey DBJ, Veverka J, Murchie SL, Cheng A et al (2001) Structural geology of Eros from near shoemaker imaging. Lunar Planet Sci Conf XXXII, abstract #1947, HoustonGoogle Scholar
  17. Prockter L, Thomas P, Robinson M, Joseph J, Milne A, Bussey B, Veverka J, Cheng A (2002) Surface expressions of structural features on Eros. Icarus 155:75–93CrossRefGoogle Scholar
  18. Ramsey KR, Head III JW (2013a) Mars impact ejecta in the regolith of Phobos: bulk concentration and distribution. Planet Space Sci 87:115–129Google Scholar
  19. Ramsey KR, Head III JW (2013b) The origin of Phobos grooves from ejecta fragments launched from impact craters on Mars: tests of the hypothesis. Planet Space Sci 75:69–95. http://dx.doi.org/10.1016/j.pss.2012.10.007
  20. Soter S, Harris A (1977) Are striations on Phobos evidence for tidal stress? Nature 268:421–422CrossRefGoogle Scholar
  21. Sullivan R et al (1996) Geology of 243 Ida. Icarus 120:119–139CrossRefGoogle Scholar
  22. Thomas PC, Prockter LM (2010) Tectonics of small bodies. In: Watters TR, Schultz RA (eds) Planetary tectonics. Cambridge University Press, CambridgeGoogle Scholar
  23. Thomas PC, Veverka J, Bloom A, Duxbury T (1979) Grooves on Phobos: their distribution, morphology and possible origin. J Geophys Res 84:8457–8477CrossRefGoogle Scholar
  24. Thomas N, Barbieri C, Keller HU, Lamye P et al (2011) The geomorphology of (21) Lutetia: results from the OSIRIS imaging system onboard ESA’s Rosetta spacecraft. Planet Sp Sci. doi:10.1016/j.pss.2011.10.003Google Scholar
  25. Veverka J, Duxbury TC (1977) Viking observations of Phobos and Deimos – preliminary results. J Geophys Res 82:4213–4223CrossRefGoogle Scholar
  26. Veverka J, Thomas P, Duxbury TC (1977) The surface of Phobos: summary of the latest Viking orbiter results. Bull Am Astr Soc 9:517–518Google Scholar
  27. Veverka J et al (1994) Discovery of grooves on Gaspra. Icarus 107(1):72–83CrossRefGoogle Scholar
  28. Wilson L, Head JW (2005) Dynamics of groove formation on Phobos by ejecta from Stickney crater: predictions and tests. Lunar Planet Sci Conf XXVI, abstract #1186, HoustonGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Lunar and Planetary LaboratoryUniversity of ArizonaTucsonUSA
  2. 2.University of CaliforniaSanta CruzUSA