Groove (Ganymede)

Living reference work entry


Grooves are subparallel, periodically spaced ridges and troughs that commonly modified light materials on Ganymede (Patterson et al. 2010).

Corresponding Terrain Type

Grooved terrain, “ridge and trough terrain,” and bright terrain.


Undulating, periodic, large amplitude, complex deformation features. These sets of subparallel ridges and troughs form the grooved terrain, which occur in lanes or swaths (groove lanes/groove swaths) (Squyres 1981; Bland et al. 2009; Collins et al. 1998) between the large, darker, and older polygon-shaped crustal blocks. Groove floors are also ridged/lineated, at finer scales.


Grooves have a uniform spacing of 3–17 km. Groove spacing is constant within a groove lane but commonly variable from one lane to another (Grimm and Squyres 1985; Patel et al. 1999). Groove amplitudes from peak to trough are up to 500 m (Giese et al. 1998). The finer lineation on the groove floors has a spacing of ≤1 km (Pappalardo et al. 1998). The...


Normal Fault Seafloor Spreading Extensional Strain Light Material Narrow Ridge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. Bland MT, McKinnon WB (2014) Forming Ganymede’s grooves at smaller strain: toward a self-consistent local and global strain history for Ganymede. Icarus (submitted).
  2. Bland MT, Showman AP (2007) The formation of Ganymede’s grooved terrain: numerical modeling of extensional necking instabilities. Icarus 189:439–456CrossRefGoogle Scholar
  3. Bland MT, McKinnon WB, Showman AP (2009) Forming Ganymede’s grooves: producing large-amplitude, complex deformation. 40th Lunar Planet Sci Conf, abstract #1690, HoustonGoogle Scholar
  4. Bland MT, McKinnon WB, Showman AP (2010) The effects of strain localization on the formation of Ganymede’s grooved terrain. Icarus 210(1):396–410CrossRefGoogle Scholar
  5. Collins GC (2002) The youngest grooves on Ganymede. Lunar Planet Sci XXXIII, abstract #1783, HoustonGoogle Scholar
  6. Collins GC (2006) Global expansion of Ganymede derived from strain measurements in grooved terrain. Lunar Planet Sci XXXVII, abstract #2077, HoustonGoogle Scholar
  7. Collins GC, Head JW, Pappalardo RT (1998) Formation of Ganymede grooved terrain by sequential extensional episodes: implications of Galileo observations for regional stratigraphy. Icarus 135:345–359CrossRefGoogle Scholar
  8. Dombard AJ, McKinnon WB (2001) Formation of Grooved terrain on Ganymede: extensional instability mediated by cold, superplastic creep. Icarus 154(2):321–336CrossRefGoogle Scholar
  9. Fink JH, Fletcher RC (1981) Variations in thickness of Ganymede’s lithosphere determined by spacings of lineations. Lunar Planet Sci XII:277–278, HoustonGoogle Scholar
  10. Giese B, Oberst J, Roatsch T, Neukum G, Head JW, Pappalardo RT (1998) The local topography of Uruk Sulcus and Galileo Regio obtained from stereo images. Icarus 135:303–316. doi:10.1006/icar.1998.5967CrossRefGoogle Scholar
  11. Golombek MP, Allison ML (1981) Sequential development of grooved terrain and polygons on Ganymede. Geophys Res Lett 8:1139–1142CrossRefGoogle Scholar
  12. Grimm RE, Squyres SW (1985) Spectral analysis of groove spacing on Ganymede. J Geophys Res 90:2013–2021CrossRefGoogle Scholar
  13. Hammond NP, Barr AC (2014) Formation of Ganymede’s grooved terrain by convection-driven resurfacing. Icarus 227:206–209CrossRefGoogle Scholar
  14. Head J, Pappalardo R, Collins G, Belton MJS, Giese B et al (2002) Evidence for Europa-like tectonic resurfacing styles on Ganymede. Geophys Res Lett 29:2151. doi:10.1029/2002GL015961CrossRefGoogle Scholar
  15. Murchie SL, Head JW, Helfenstein P, Plescia JB (1986) Terrain types and local-scale stratigraphy of grooved terrain on Ganymede. J Geophys Res 91:E222–E238CrossRefGoogle Scholar
  16. Pappalardo RT et al (1998) Grooved terrain on Ganymede: first results from Galileo high-resolution imaging. Icarus 135:276–302Google Scholar
  17. Parmentier EM, Squyres SW, Head JW, Allison ML (1982) The tectonics of Ganymede. Nature 295:290–293CrossRefGoogle Scholar
  18. Patel JG, Pappalardo RT, Head JW, Collins GC, Hiesinger H, Sun J (1999) Topographic wavelengths of Ganymede groove lanes from Fourier analysis of Galileo images. J Geophys Res 104:24057–24074. doi:10.1029/1998JE001021CrossRefGoogle Scholar
  19. Patterson GW, Collins GC, Head JW, Pappalardo RT, Prockter LM, Lucchitta BK, Kay JP (2010) Global geologic mapping of Ganymede. Icarus 207:845–867. doi:10.1016/j.icarus.2009.11.035CrossRefGoogle Scholar
  20. Schenk PM, Moore JM (1995) Volcanic constructs on Ganymede and Enceladus: topographic evidence from stereo images and photoclinometry. J Geophys Res 100(E9):19009–19022. doi:10.1029/95JE01854CrossRefGoogle Scholar
  21. Schenk PM, McKinnon WB, Gwynn D, Moore JM (2001) Flooding of Ganymede’s bright terrain by low-viscosity water-ice lavas. Nature 410:57–60CrossRefGoogle Scholar
  22. Schlische RW (1991) Half-graben basin filling models: new constraints on continental extensional basin development. Basin Res 3:123–141CrossRefGoogle Scholar
  23. Shoemaker EM, Lucchitta BK, Plescia JB, Squyres SW, Wilhemps DE (1982) The geology of Ganymede. In: Morrison D (ed) Satellites of Jupiter. University of Arizona Press, Tucson, pp 435–520Google Scholar
  24. Showman AP, Stevenson DJ, Malhotra R (1997) Coupled orbital and thermal evolution of Ganymede. Icarus 129:367–383. doi:10.1006/icar.1997.5778CrossRefGoogle Scholar
  25. Squyres SW (1980) Volume changes in Ganymede and Callisto and the origin of grooved terrain. Geophys Res Lett 7:593–596CrossRefGoogle Scholar
  26. Squyres SW (1981) The topography of Ganymede’s grooved terrain. Icarus 46:156–168. doi:10.1016/0019-1035(81)90204-9CrossRefGoogle Scholar
  27. Zahnle K, Schenk P, Levison HF, Dones L (2003) Cratering rates in the outer solar system. Icarus 163:263–289. doi:10.1016/s0019-1035(03)00048-4CrossRefGoogle Scholar
  28. Zuber MT, Parmentier EM (1986) Lithospheric necking: a dynamic model for rift morphology. Earth Planet Sci Lett 77(3–4):373–383CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Planetary Science Research GroupEötvös Loránd University, Institute of Geography and Earth SciencesBudapestHungary