Skip to main content

Impact Basin

Definition

The term “impact basin” usually refers to multiring basins, but it may also refer to two-ring craters with or without a central peak, or to very large degraded craters with an undefined number of rings.

The term “basin” as a morphologic category was introduced by Hartman and Kuiper (1962) to designate large lunar circular depressions (maria) with multiple ring structures and radial fault systems as opposed to craters, which lack concentric and radial structures (Hartmann and Wood 1971). Melosh (1989) defined multiring basins as large circular impact structures that “possess at least two concentric asymmetric scarps, one of which may be the original crater rim” (internal rings are generally symmetric). Morphological criteria of multiringed impact basins defined by Pike and Spudis (1987) include, outward from the interior depression: (1) isolated massifs and massif chains in circular patterns; (2) arcuate ridges aligned with massifs; and (3) scarps aligned with massifs or...

Keywords

  • Tsunami Deposit
  • Fault Scarp
  • Crater Floor
  • Impact Basin
  • Complex Crater

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  • Alexopoulos JS, McKinnon WB (1994) Large impact craters and basins on Venus: implications for ring mechanics on the terrestrial planets. In: Dressler BO, Grieve RAF, Sharpton VL (eds) Large meteorite impacts and planetary evolution, Geological Society of America special papers 293. Geological Society of America, Boulder, pp 178–198

    Google Scholar 

  • Baker DMH et al (2011) The transition from complex crater to peak-ring basin on Mercury: new observations from MESSENGER flyby data and constraints on basin formation models. Planet Space Sci 59:1932–1948. doi:10.1016/j.pss.2011.05.010

    CrossRef  Google Scholar 

  • Baldwin RB (1949) The face of the Moon. The University of Chicago Press, Chicago

    Google Scholar 

  • Baldwin RB (1972) The tsunami model for the origin of ring structures concentric with large lunar craters. Phys Earth Planet In 6:327–339

    CrossRef  Google Scholar 

  • Bierhaus M, Wünnemann K, Elbeshausen D (2012) Numerical modeling of basin-forming impacts: implications for the heat budget of planetary interiors. 43rd Lunar Planet Sci Conf, abstract #2174, Houston

    Google Scholar 

  • Byrne PK, Klimczak C, Solomon SC, Watters TR, Murchie SL (2012) Tectonic structural complexity in Caloris basin, Mercury. EPSC 7, EPSC2012-765 2012

    Google Scholar 

  • Cintala MJ, Grieve RAF (1998) Scaling impact melting and crater dimensions: implications for the lunar cratering record. Meteorit Planet Sci 33:889–912

    CrossRef  Google Scholar 

  • Collins GS, Melosh HJ, Morgan JV, Warner MR (2002) Hydrocode simulations of Chicxulub crater collapse and peak-ring formation. Icarus 157:24–33

    CrossRef  Google Scholar 

  • Cook AC, Watters TR, Robinson MS, Spudis PD, Bussey DBJ (2000) Lunar polar topography derived from Clementine stereo images. J Geophys Res 105(E5):12023–12033. doi:10.1029/1999JE001083

    CrossRef  Google Scholar 

  • Cook AC, Spudis PD, Robinson MS, Watters TR (2002) Lunar topography and basins mapped using a Clementine Stereo digital elevation model. Lunar Planet Sci XXXIII, abstract #1281, Houston

    Google Scholar 

  • Dietz RS (1946) The meteoritic impact origin of the Moon’s surface features. J Geol 54:359–375

    CrossRef  Google Scholar 

  • Ernst CM, Denevi BW, Murchie SL et al (2013) Volcanic plains in Caloris basin: thickness, timing, and what lies beneath. 44th Lunar Planet Sci Conf, abstract #2364, Houston

    Google Scholar 

  • Fassett CI, Head JW, Baker DMH, Zuber MT et al (2012) Large impact basins on Mercury: global distribution, characteristics, and modification history from MESSENGER orbital data. J Geophys Res 117:E00L08. doi:10.1029/2012JE004154

    Google Scholar 

  • Frey HV (2008) Ages of very large impact basins on mars: Implications for the late heavy bombardment in the inner solar system. Geophys Res Lett 35: L13203

    CrossRef  Google Scholar 

  • Frey H (2011) Previously unknown large impact basins on the Moon: implications for lunar stratigraphy. In: Ambrose WA, Williams DA (eds) Recent advances and current research issues in lunar stratigraphy, The Geological Society of America. Special paper 477. Geological Society of America, Boulder, pp 53–77

    CrossRef  Google Scholar 

  • Gilbert GK (1893) The Moon’s face: a study of the origin of its features. Philos Soc Wash Bull 12:241–292

    Google Scholar 

  • Glikson AY (2005) Geochemical signatures of Archean to Early Proterozoic Maria-scale oceanic impact basins. Geology 2:125–128. doi:10.1130/G21034.1v. 33

    CrossRef  Google Scholar 

  • Grieve RA, Therriault AM, Cintala MJ (2004) Impact basins and crustal evolution of the early Earth. American Geophysical Union, Spring Meeting 2004, abstract #V11A-03

    Google Scholar 

  • Grieve RAF, Reimold WU, Morgan J, Riller U, Pilklington M (2008) Observations and interpretations at Vredefort, Sudbury, and Chicxulub: towards an empirical model of terrestrial impact basin formation. Meteorit Planet Sci 43(5):855–882

    CrossRef  Google Scholar 

  • Hartman WK, Kuiper GP (1962) Concentric structures surrounding lunar basins. Commun Lunar Planet Lab 1:51–66

    Google Scholar 

  • Hartmann WK, Wood CA (1971) Moon: origin and evolution of multi-ring basins. Moon 3:3–78

    CrossRef  Google Scholar 

  • Hartmann WK, Yale FG (1968) Mare Orientale and its basin system. Commun Lunar Planet Lab 7:131–137

    Google Scholar 

  • Head JW (1974) Orientale multi-ringed basin interior and implications for the petrogenesis of lunar highland samples. Moon 11:327–356

    CrossRef  Google Scholar 

  • Head JW (2010) Transition from complex crater to multi-ringed basins on terrestrial planetary bodies: scale-dependent role of expanding melt cavity and progressive interaction with the displaced zone. Geophys Res Lett 37:L02203

    CrossRef  Google Scholar 

  • Hiesinger H, Head JW III (2002) Topography and morphology of the Argyre Basin, Mars: implications for its geologic and hydrologic history. Planet Space Sci 50:939–981

    CrossRef  Google Scholar 

  • Hiesinger H, Head III JW (2003) Lunar South Pole-Aitken impact basin: clementine topography and implications for the interpretation of basin structure and stratigraphy. Microsymposium 38, MS101. Vernadsky Institute/Brown University, Moscow

    Google Scholar 

  • Hodges CA, Wilhelms DE (1978) Formation of lunar basin rings. Icarus 34:294–323

    CrossRef  Google Scholar 

  • Kennedy PJ, Freed AM, Solomon SC (2008) Mechanisms of faulting in and around Caloris basin, Mercury. J Geophys Res 113:E08004. doi:10.1029/2007JE002992

    Google Scholar 

  • Klimczak C, Schultz RA, Nahm AL (2010) Evaluation of the origin hypotheses of Pantheon Fossae, central Caloris basin, Mercury. Icarus 209:262–270

    CrossRef  Google Scholar 

  • Kuiper GP (1954) On the origin of the lunar surface features. Proc Natl Acad Sci 40:1096–1112

    CrossRef  Google Scholar 

  • Melosh HJ (1989) Impact cratering: a geologic process. Oxford University Press, New York, 245pp

    Google Scholar 

  • Melosh HJ, McKinnon WB (1978) The mechanics of ringed basin formation. Geophys Res Lett 5:985–988

    CrossRef  Google Scholar 

  • Morrison DA (1998) Did a thick South Pole-Aitken basin melt sheet differentiate to form cumulates? Lunar Planet Sci Conf XXIX, abstract #1657, Houston

    Google Scholar 

  • Oberst J, Scholten F, Unbekannt H, Haase I, Hiesinger H, Robinson M (2010) An inventory of degraded lunar basins using LROC stereo terrain models. European Planetary Science Congress EPSC, abstracts vol 5, EPSC2010-827

    Google Scholar 

  • Oberst J, Unbekkant H, Scholten F, Haase I, Hiesinger H, Robinson M (2011) A search for degraded lunar basins using the LROC-WAC digital terrain model (GLD100). 42nd Lunar Planet Sci Conf, abstract #1992, Houston

    Google Scholar 

  • Pike RJ, Spudis PD (1987) Basin-ring spacing on the Moon, Mercury, and Mars. Earth Moon Planets 39:129–194

    CrossRef  Google Scholar 

  • Prockter LM, Ernst CM, Denevi BW, Chapman CR et al (2010) Evidence for young volcanism on mercury from the third MESSENGER flyby. Science. doi:10.1126/science.1188186

    Google Scholar 

  • Schenk PM (1998) Geology of Gilgamesh, Ganymede: new insights from stereo and topographic mapping. Lunar Planet Sci XXIX, abstract #1949, Houston

    Google Scholar 

  • Schultz RA, Frey HV (1990) A new survey of multiring impact basins on Mars. J Geophys Res 95(B9):14175–14189. doi:10.1029/JB095iB09p14175

    CrossRef  Google Scholar 

  • Spudis PD (1993) The geology of multi-ring impact basins. Cambridge University Press, New York, 263 pp

    CrossRef  Google Scholar 

  • Spudis PD (1994) The large impact process inferred from the geology of lunar multiring basins. In: Dressler BO, Grieve RAF, Sharpton VL (eds) Large meteorite impacts and planetary evolution, Geological Society of America special paper 293. Geological Society of America, Boulder. pp 1-10

    Google Scholar 

  • Spudis PD (1996) Clementine laser altimetry and multi-ring basins on the Moon. Lunar Planet Sci XXVI:1337–1338, Houston

    Google Scholar 

  • Tera F, Papanastassiou DA, Wasserburg GJ (1974) Isotopic evidence for a terminal lunar cataclysm. Earth Planet Sci Lett 22:1–21

    CrossRef  Google Scholar 

  • Turtle EP, Pierazzo E, Collins GS, Osinski GR, Melosh HJ, Morgan JV, Reimold WU (2005) What does crater diameter mean? In: Kenkmann T, Hörz F, Deutsch A (eds) Large meteorite impacts III, Geological Society of America special paper 384. Geological Society of America, Boulder, pp 25–42

    Google Scholar 

  • Watters TR, Murchie SL, Robinson MS, Solomon SC, Denevi BW, André SL, Head JW (2009) Emplacement and tectonic deformation of smooth plains in the Caloris basin, Mercury. Earth Planet Sci Lett 285:309–319

    CrossRef  Google Scholar 

  • Werner SC (2008) The early martian evolution – constraints from basin formation ages. Icarus 195:45–60. doi:10.1016/j.icarus.2007.12.008

    CrossRef  Google Scholar 

  • Whitten J, Head JW, Staid M et al (2011) Lunar mare deposits associated with the Orientale impact basin: new insights into mineralogy, history, mode of emplacement, and relation to Orientale Basin evolution from Moon Mineralogy Mapper (M3) data from Chandrayaan-1. J Geophys Res 116:E00G9. doi:10.1029/2010JE003736

    Google Scholar 

  • Wilhelms DE (1987) The geologic histoy of the Moon. USGS Professional Paper 1348

    Google Scholar 

  • Wood CA, Head JW (1976) Comparison of impact basins on Mercury, Mars and the moon. Lunar Planet Sci Conf VII, vol 3 (A77-34651 15–91). Pergamon Press, New York, pp 3629–3651

    Google Scholar 

  • Wood CA, Tam W (1993) Morphologic classes of impact basins on Venus. Lunar Planet Sci Conf XXIV:1535–1536, Houston

    Google Scholar 

  • Wood CA, Lorenz R, Kirk R, Lopes R, Mitchell K, Stofan E, The Cassini RADAR Team (2010) Impact craters on Titan. Icarus 206:334–344

    CrossRef  Google Scholar 

  • Yamamoto S, Nakamura R, Matsunaga T, Ogawa Y, Ishihara Y, Morota T, Hirata N, Ohtake M, Hiroi T, Yokota Y, Haruyama J (2010) Possible mantle origin of olivine around lunar impact basins detected by SELENE. Nat Geosci 3:533–536

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ross Potter .

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Potter, R., Hargitai, H., Öhman, T. (2014). Impact Basin. In: Encyclopedia of Planetary Landforms. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9213-9_15-2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9213-9_15-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-9213-9

  • eBook Packages: Springer Reference Earth & Environm. ScienceReference Module Physical and Materials Science