Esker

  • Jarmo Korteniemi
  • Hazen A. J. Russell
  • David R. Sharpe
  • Robert D. Storrar
Living reference work entry
DOI: https://doi.org/10.1007/978-1-4614-9213-9_141-1

Definition

Straight-to-sinuous ridge composed of sand/gravel, deposited in a confined glacial meltwater drainage channel.

Category

A type of straight-to-sinuous ridge (Linear ridge types (various origins)).

Proposed origin of some of the inverted channels and sinuous ridges on Mars.

Description

Winding, steep sided, narrow, sharp- to broad-crested ridges of cross-stratified and massive sand, gravel, and boulders. May be mistaken for other slightly sinuous or Linear ridge types (various origins). In planform, eskers can be sinuous, anastomosing, and/or discontinuous. Isolated, closed depressions (kettles), commonly water filled, may flank or be part of broader esker ridges.

Esker Patterns

Eskers may occur in isolation or form networks that branch upflow in either subparallel or dendritic patterns (Brennand 2000) with up to fourth-order tributaries (Shilts et al. 1987). Esker systems may be composed of (in increasing order of scale) anastomosing eskers, short sub-parallel esker systems,...

Keywords

Froude Number Sedimentary Facies Open Channel Flow Glacial Meltwater Hyperconcentrated Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access

References

  1. Banerjee I, McDonald BC (1975) Nature of esker sedimentation. In: Jopling AV, McDonald BC (eds) Glaciofluvial and glaciolacustrine sedimentation, Society of Economic Palaeontologists and Mineralogists. Special publication 23. Society of Economic Palaeontologists and Mineralogists, Tulsa, pp 304–320Google Scholar
  2. Banks ME, Lang NP, Kargel JS, McEwen AS, Baker VR, Grant JA, Pelletier JD, Strom RG (2009) An analysis of sinuous ridges in the southern Argyre Planitia, Mars using HiRISE and CTX images and MOLA data. J Geophys Res 114(E9), CiteID E09003Google Scholar
  3. Bernhardt H, Hiesinger H, Reiss D, Ivanov M, Erkeling G (2013) Putative eskers and new insights into glacio-fluvial depositional settings in southern Argyre Planitia, Mars. Planet Space Sci 85:261–278CrossRefGoogle Scholar
  4. Brennand TA (2000) Deglacial meltwater drainage and glaciodynamics: inferences from Laurentide eskers, Canada. Geomorphology 32:263–293CrossRefGoogle Scholar
  5. Burke MJ, Woodward J, Russell AJ et al (2008) Controls on the sedimentary architecture of a single event englacial esker: Skeiðarárjökull, Iceland. Quat Sci Rev 27:1829–1847CrossRefGoogle Scholar
  6. Coleman N (2011) Phaenna Dorsum, an esker on Mars: insights from THEMIS and HiRISEe images and MOLE data. Lunar Planet Sci Conf, abstract #1906, HoustonGoogle Scholar
  7. Craig BG (1964) Surficial geology of east-central District of Mackenzie, Northwest Territories. Geological Survey of Canada, Bulletin 99. Department of mines and technical surveys, Ottawa, Canada. http://geoscan.nrcan.gc.ca/starweb/geoscan/servlet.starweb?path=geoscan/downloade.web&search1=R=100618
  8. Cummings DI, Kjasgaard BA, Russell HAJ, Sharpe DR (2011) Eskers as mineral exploration tools. Earth Sci Rev 109:32–43CrossRefGoogle Scholar
  9. Deschamps R, Eschard R, Roussé S (2013) Architecture of Late Ordovician glacial valleys in the Tassili N’Ajjer area (Algeria). Sediment Geol 289:124–147CrossRefGoogle Scholar
  10. Fitzsimons SJ (1991) Supraglacial eskers in Antarctica. Geomorphology 4(3–4):293–299. doi:10.1016/0169-555X(91)90011-XCrossRefGoogle Scholar
  11. Head JW (2000) Tests for ancient polar deposits on Mars: origin of esker-like sinuous ridges (Dorsa Argentea) using MOLA data. 31th Lunar Planet Sci, abstract #1116, HoustonGoogle Scholar
  12. Head JW, Pratt S (2001) Extensive Hesperian-aged south polar ice sheet on Mars: evidence for massive melting and retreat, and lateral flow and ponding of meltwater. J Geophys Res 106(E6):12275–12300CrossRefGoogle Scholar
  13. Hummel D (1874) Om rullstenbildningar. K. Svenska Vetenskaps-Akademiens Förhandlingar, Bihang til 2(11), 36 pGoogle Scholar
  14. Kargel JS, Strom RG (1991) Terrestrial glacial eskers: analogs for martian sinuous ridges. Lunar Planet Sci Conf XXII:683–684, HoustonGoogle Scholar
  15. Knudsen O (1995) Concertina eskers, Bruarjokull, Iceland: an indicator of surge-type glacier behaviour. Quat Sci Rev 14:487–493CrossRefGoogle Scholar
  16. Röthlisberger H (1972) Water pressure in intra- and subglacial channels. J Glaciol 11:177–203Google Scholar
  17. Russell HAJ, Arnott RWC (2003) Hydraulic jump and hyperconcentrated flow deposits of a glacigenic subaqueous fan: Oak Ridges Moraine, Southern Ontario. J Sediment Res 73:887–905CrossRefGoogle Scholar
  18. Shilts WW, Aylsworth JM, Kaszycki CA, Klassen RA (1987) Canadian shield. In: Graf WL (ed) Geomorphic systems of North America, Centennial special 2. Geological Society of America, Boulder, Colorado, pp 119–161Google Scholar
  19. Shreve RL (1985) Esker characteristics in terms of glacier physics, Katahdin esker system, Maine. Geol Soc Am Bull 96:639–646CrossRefGoogle Scholar
  20. Stone GH (1899) The glacial gravels of Maine. U.S. Geological Survey?, Washington. http://pubs.er.usgs.gov/publication/m34

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Jarmo Korteniemi
    • 1
  • Hazen A. J. Russell
    • 2
  • David R. Sharpe
    • 2
  • Robert D. Storrar
    • 3
  1. 1.Earth and Space Physics, Department of PhysicsUniversity of OuluOuluFinland
  2. 2.Geological Survey of CanadaOttawa, OntarioCanada
  3. 3.School of GeographyQueen Mary University of LondonLondonUK