Skip to main content

Crustal Plateau (Venus)

  • Living reference work entry
  • First Online:
Encyclopedia of Planetary Landforms
  • 175 Accesses

Definition

Crustal plateaus are ~1,500–2,400 km diameter, steep-sided, flat-topped, quasi-circular regions on Venus that reside 1–4 km above mean planetary radius (MPR) and which host much of the planet’s ribbon tessera terrain (complexly deformed crust).

Category

A type of crustal plateau.

Description

In SAR images, crustal plateaus (Fig. 1) appear as extensive, radar-bright, or relatively rough terrains surrounded by radar-dark, or relatively smooth, lowlands.

Fig. 1
figure 1

Alpha Regio. Magellan left-look radar image mosaic. Scale bar 400 km (NASA/JPL/USGS)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Banks BK, Hansen VL (2000) Relative timing of crustal plateau magmatism and tectonism at Tellus Regio, Venus. J Geophys Res 105:17655–17668

    Article  Google Scholar 

  • Basilevsky AT, Head JW, Schaber GG, Strom RG (1997) The resurfacing history of Venus. In: Bouger SW, Hunten DM, Phillips RJ (eds) Venus II. University of Arizona Press, Tucson

    Google Scholar 

  • Bindschadler DL (1995) Tessera terrain and the formation of plateau highlands, Venus II. The University of Arizona, Tuscon, p 14

    Google Scholar 

  • Bindschadler DL, Head JW (1991) Tessera terrain, Venus: characterization and models for origin and evolution. J Geophys Res 96:5889–5907

    Article  Google Scholar 

  • Bindschadler DL, Parmentier EM (1990) Mantle flow tectonics: the influence of a ductile lower crust and implications for the formation of topographic uplands on Venus. J Geophys Res 95(B13):21329–21344

    Article  Google Scholar 

  • Bindschadler DL, deCharon A, Beratan KK, Head JW (1992a) Magellan observations of Alpha Regio: implications for formation of complex ridged terrains on Venus. J Geophys Res 97:13563–13577

    Article  Google Scholar 

  • Bindschadler DL, Schubert G, Kaula WM (1992b) Coldspots and hotspots: global tectonics and mantle dynamic of Venus. J Geophys Res 97:13495–13532

    Article  Google Scholar 

  • Bjonnes EE, Hansen VL, James B, Swenson JB (2012) Equilibrium resurfacing of Venus: results from new Monte Carlo modeling and implications for Venus surface histories. Icarus. doi:10.1016/j.icarus.2011.03.033

    Google Scholar 

  • Ghent RR, Hansen VL (1999) Structural and kinematic analysis of eastern Ovda Regio, Venus: implications for crustal plateau formation. Icarus 139:116–136

    Article  Google Scholar 

  • Ghent RR, Tibuleac IM (2002) Ribbon spacing in Venusian tessera: implications for layer thickness and thermal state. Geophys Res Lett 29(20):994–997

    Article  Google Scholar 

  • Gilmore MS, Head JW (2000) Sequential deformation of plains at the margins of Alpha Regio, Venus: implications for tessera formation. Meteor Planet Sci 35(4):667–687

    Article  Google Scholar 

  • Gilmore MS, Collins GC, Ivanov MA, Marinangeli L, Head JW (1998) Style and sequence of extensional structures in tessera terrain, Venus. J Geophys Res 103(E7):16813–16840

    Article  Google Scholar 

  • Grimm RE (1994) The deep structure of Venusian plateau highlands. Icarus 112(1):89–103

    Article  Google Scholar 

  • Grimm RE, Hess PC (1997) The crust of Venus. In: Bougher SW, Hunten DM, Philips RJ (eds) Venus II: geology, geophysics, atmosphere, and solar wind environment. University of Arizona Press, Tucson, p 1205

    Google Scholar 

  • Hansen VL (2005) Venus’s shield terrain. Geol Soc Am Bull 117(5/6):808–822. doi:10.1130/B256060.1

    Article  Google Scholar 

  • Hansen VL (2006) Geologic constraints on crustal plateau surface histories, Venus: the lava pond and bolide impact hypotheses. J Geophys Res 111:E11010. doi:10.1029/2006JE002714

    Article  Google Scholar 

  • Hansen VL, López I (2010) Venus records a rich early history. Geology 38(4):311–314

    Article  Google Scholar 

  • Hansen VL, López I (2013) Geologic mapping of the Niobe and Aphrodite 1:10 M map areas, Venus: insights for mapping methodology and implications for Venus evolution. 44th Lunar Planet Sci Conf, Abstract #2027, LPI Contributions, 1719, Houston

    Google Scholar 

  • Hansen VL, Willis JJ (1996) Structural analysis of a sampling of tesserae: implications for Venus geodynamics. Icarus 123(4):296–312

    Article  Google Scholar 

  • Hansen VL, Willis JJ (1998) Ribbon terrain formation, southwestern Fortuna Tessera, Venus: implications for lithosphere evolution. Icarus 132:321–343

    Article  Google Scholar 

  • Hansen VL, Young DA (2007) Venus’s evolution: a synthesis. In: Cloos M, Carlson WD, Gilbert MC, Liou JG, Sorensen SS (eds) Convergent Margin Terranes and Associated regions: a tribute to W.G. Ernst. Geological Society of America, Denver, pp 255–273. doi:10.1130/2006.2419(13)

    Chapter  Google Scholar 

  • Hansen VL, Willis JJ, Banerdt WB (1997) Tectonic overview and synthesis. In: Bouger SW, Hunten DM, Phillips RJ (eds) Venus II. University of Arizona Press, Tucson, pp 797–844

    Google Scholar 

  • Hansen VL, Banks BK, Ghent RR (1999) Tessera terrain and crustal plateaus, Venus. Geology 27:1071–1074

    Article  Google Scholar 

  • Hansen VL, Phillips RJ, Willis JJ, Ghent RR (2000) Structures in tessera terrain, Venus: issues and answers. J Geophys Res 105:4135–4152

    Article  Google Scholar 

  • Hashimoto GL, Roos-Serote M, Sugita S, Gilmore MS, Kamp LW, Carlson RW, Baines KH (2008) Felsic highland crust on Venus suggested by Galileo near-infrared mapping spectrometer data. J Geophys Res 113:E00B24. doi:10.1029/2008JE003134

    Google Scholar 

  • Ivanov MA, Head JW (1996) Tessera terrain on Venus: a survey of the global distribution, characteristics, and relation to surrounding units from Magellan data. J Geophys Res 101(6):14861–14908

    Article  Google Scholar 

  • Izenberg NR, Arvidson RE, Phillips RJ (1994) Impact crater degradation on Venusian plains. Geophys Res Lett 21:289–292

    Article  Google Scholar 

  • Kiefer WS, Peterson K (2003) Mantle and crustal structure in Phoebe Regio and Devana Chasma, Venus. Geophys Res Lett 30(1):1005

    Article  Google Scholar 

  • Kucinskas AB, Turcotte DL (1994) Isostatic compensation of equatorial highlands on Venus. Icarus 112(1):104–116

    Article  Google Scholar 

  • McGill GE (1994) Hotspot evolution and Venusian tectonic style. J Geophys Res 99(E11):23149–23161

    Article  Google Scholar 

  • McKinnon WB, Zahnle KJ, Ivanov BA, Melosh HJ (1997) Cratering on Venus: models and observations. In: Bouger SW, Hunten DM, Phillips RJ (eds) Venus II. University of Arizona Press, Tucson, pp 969–1014

    Google Scholar 

  • Mueller N, Helbert J, Hashimoto GL, Tsang CCC, Erard S, Piccioni G, Drossart P (2008) Venus surface thermal emission at 1 mm in VIRTIS imaging observations: evidence for variation of crust and mantle differentiation conditions. J Geophys Res 113:E00B17. doi:10.1029/2008JE003118

    Google Scholar 

  • Nimmo F, McKenzie D (1998) Volcanism and tectonics on Venus. Annu Rev Earth Planet Sci 26:23–52

    Article  Google Scholar 

  • Nunes DC et al (2004) Relaxation of compensated topography and the evolution of crustal plateaus on Venus. J Geophys Res 109:E01006. doi:10.1029/2003JE002119

    Google Scholar 

  • Phillips RJ, Hansen VL (1994) Tectonic and magmatic evolution of Venus. Annu Rev Earth Planet Sci 22:597–654

    Article  Google Scholar 

  • Phillips RJ, Hansen VL (1998) Geological evolution of Venus. Rises Plains Plumes Plateaus Sci 279:1492–1497

    Google Scholar 

  • Phillips RJ, Izenberg NR (1995) Ejecta correlations with spatial crater density and Venus resurfacing history. Geophys Res Lett 22(12):1517–1520

    Article  Google Scholar 

  • Phillips RJ, Grimm RE, Malin MC (1991) Hot-spot evolution and the global tectonics of Venus. Science 252:651–658

    Article  Google Scholar 

  • Romeo I, Turcotte DL (2008) Pulsating continents on Venus: an explanation for crustal plateaus and tessera terrains. Earth Planet Sci Lett 276(1–2):85–97

    Article  Google Scholar 

  • Simons M, Solomon SC, Hager BH (1997) Localization of gravity and topography: constraints on the tectonics and mantle dynamics of Venus. Geophys J Int 131(1):24–44

    Article  Google Scholar 

  • Slonecker (2013), Structural and geologic mapping of northern Tellus Regio, Venus: Implications for crustal plateau evolution, M.S. Thesis, University of Minnesota Duluth, 77 pp

    Google Scholar 

  • Smrekar SE, Phillips RJ (1991) Venusian highlands: geoid to topography ratios and their implications. Earth Planet Sci Lett 107:582–597

    Article  Google Scholar 

  • Smrekar SE, Kiefer WS, Stofan ER (1997) Large volcanic rises on Venus. In: Bouger SW, Hunten DM, Phillips RJ (eds) Venus II. University of Arizona Press, Tucson, pp 845–879

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vicki L Hansen .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Hansen, V.L. (2014). Crustal Plateau (Venus). In: Encyclopedia of Planetary Landforms. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9213-9_122-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9213-9_122-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-9213-9

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics