Encyclopedia of Medical Immunology

Living Edition
| Editors: Ian MacKay, Noel R. Rose

C5b-C9 Deficiency

  • Anete Sevciovic GrumachEmail author
Living reference work entry
DOI: https://doi.org/10.1007/978-1-4614-9209-2_3-1

Synonyms

Definition

C5b-C9 represents the terminal pathway of complement system. Complete genetic deficiency of any of those components can lead to increased risk of meningococcal disease, often recurrent infections caused by unusual serogroups.

C5b-9

Three major activation pathways, the classical, the alternative, and the lectin pathway, lead to a common pathway, the terminal complement system that consists of components five to nine. All pathways lead to cleavage of C3, and when additional C3b molecules are bound to the C3 convertases, this results in formation of C5 convertases (C4b2a3b) and subsequently cleavage of C5. This splits C5 into the small C5a molecule, and the larger C5b molecule, which is the initial component of the membrane attack complex (MAC). C5a is a strong chemotactic factor and an...

This is a preview of subscription content, log in to check access.

References

  1. Andreoni J, Käyhty H, Densen P. Vaccination and the role of capsular polysaccharide antibody in prevention of recurrent meningococcal disease in late complement component-deficient individuals. J Infect Dis. 1993;168:227–31.CrossRefPubMedGoogle Scholar
  2. Arnold DF, Roberts AG, Thomas A, Ferry B, Morgan BP, Chapel HA. Novel mutation in a patient with a deficiency of the eighth component of complement associated with recurrent meningococcal meningitis. J Clin Immunol. 2009;29:691–5.CrossRefPubMedGoogle Scholar
  3. Barilla-LaBarca ML, Atkinson JP. Rheumatic syndromes associated with complement deficiency. Curr Opin Rheumatol. 2003;15:55–60.CrossRefPubMedGoogle Scholar
  4. Bols A, Janssens J, Petermans W, Stevens E, Bobbaers H. Recurrent meningococcal infections in a patient with congenital C5 deficiency. Acta Clin Belg. 1993;48(10):42–7.CrossRefPubMedGoogle Scholar
  5. Brandtzaeg P, Mollnes TE, Kierulf P. Complement activation and endotoxin levels in systemic meningococcal disease. J Infect Dis. 1989;160:58–65.CrossRefPubMedGoogle Scholar
  6. Centers for Disease Control and Prevention. Prevention and control of meningococcal disease. Recommendations of the advisory committee on immunization practices. Morbidity and mortality weekly report. 2013;62:2.Google Scholar
  7. de Marcellus C, Taha MK, Gaudelus J, Fremeaux-Bacchi V, de Pontual L, Guiddir T. Complement terminal fraction deficiency revealed at first invasive meningococcal infection. Arch Pediatr. 2015;22(3):296–9.CrossRefPubMedGoogle Scholar
  8. Fernie BA, Würzner R, Orren A, Morgan BP, Potter PC, Platonov AE, Vershinina IV, Shipulin GA, Lachmann PJ, Hobart MJ. Molecular bases of combined subtotal deficiencies of C6 and C7; and theis effects in combination with other C6 and C7 deficiencies. J Immunol. 1996;157:3648–57.PubMedGoogle Scholar
  9. Figueroa JE, Densen P. Infectious diseases associated with complemente deficiencies. Clin Microbiol Rev. 1991;4:359–95.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Fijen CA, Kuijper EJ, Hannema AJ, Sjöholm AG, van Putten JP. Complement deficiencies in patients over ten years old with meningococcal disease due to uncommon serogroups. Lancet. 1989;2:585–8.CrossRefPubMedGoogle Scholar
  11. Fijen CA, Kuijper MT, Bulte MT, Daha MR, Dankert J. Assessment of complement deficiency in patients with meningococcal disease in the Netherlands. Clin Infect Dis. 1999;28:98–105.CrossRefPubMedGoogle Scholar
  12. Frank MM. Complement deficiencies. Pediatr Clin N Am. 2000;47:1339–54.CrossRefGoogle Scholar
  13. Fukumori Y, Horiuch T. Terminal complemente componente deficiencies in Japan. Exp Clin Immunogenet. 1998;15:244–8.CrossRefPubMedGoogle Scholar
  14. Gomez-Lus ML, Giménez MJ, Vázquez JA, Aguilar L, Anta L, Berrón S, Laguna B, Prieto J. Opsonophagocytosis versus complemente bactericidal killing as effectors following Neisseria meningitidis group C vaccination. Infection. 2003;31:51–4.CrossRefPubMedGoogle Scholar
  15. Grimnes G, Beckman H, Lappegård KT, Mollnes TE, Skogen V. Recurrent meningococcal sepsis in a presumptive immunocompetent host shown to be complement C5 deficient-a case report. APMIS. 2011;119(7):479–84.CrossRefPubMedGoogle Scholar
  16. Grumach AS, Kirschfink M. Are complement deficiencies really rare? Overview on prevalence, clinical importance and modern diagnostic approach. Mol Immunol. 2014;61(2):110–7.CrossRefPubMedGoogle Scholar
  17. Halle D, Elsten D, Geudalia D, Sasson A, Shinar E, Schlesinger M, Zimran A. High prevalence of complement C7 deficiency among healthy blood donors of Moroccan Jewish ancestry. Am J Med Genet. 2001;99:325–7.CrossRefPubMedGoogle Scholar
  18. Haut conseil de la santé publique. Avis relatif à l’antibioprophylaxie et la caccination méningococcique des personnes traitées par eculizumab (Soliris 300 mg solution à diluer pour perfusion), séance du 8 novembre 2012.Google Scholar
  19. Hobart MJ, Fernie BA, DiScipio RG. Structure of the human C7 gene and comparison with the C6, C8A, C8B and C9 genes. J Immunol. 1995;154:5188–94.PubMedGoogle Scholar
  20. Inai S, Akagaki Y, Moriyama T, Fukumori Y, Yoshimura K, Ohnoki S, Yamaguchi H. Inherited deficiencies of the late-acting complement components other than C9 found among healthy blood donors. Int Arch Allergy Appl Immunol. 1989;90:274–9.CrossRefPubMedGoogle Scholar
  21. Kuruvilla M, de la Morena MT. Antibiotic prophylaxis in primary immune deficiency disorders. J Allergy Clin Immunol Pract. 2013;1:573–82.CrossRefPubMedGoogle Scholar
  22. Ladhani SN, Cordery R, Mandal S, Christensen H, Campbell H, Boirrow R, Ramsay ME, PHE VaPIBI Forum Members. Preventing secondary cases of invasive meningococcal capsular group B (Men B) disease using a recently-licensed, multi-component, protein-based vaccine (Bexsero ®). J Infect. 2014;69:470–80.CrossRefPubMedGoogle Scholar
  23. Le Bastard D, Riou JY, Konczaty H, Bourrillon A, Guibourdenche M. Neisseria meningitidis: Sérogroupe Y A propos de trente-huit observations. Pathol Biol. 1989;37(78):901–7.PubMedGoogle Scholar
  24. Lint TF, Zeitz HJ, Gewurz H. Inherited deficiency of the ninth component of complement in man. J Immunol. 1980;125:2252–7.Google Scholar
  25. Lovelace LL, Cooper CL, Sodetz JM, Lebioda L. Structure of human C8 protein provides mechanistic insight into membrane pore formation by complement. J Biol Chem. 2011;286(20):17585–92.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Mayilyan KR. Complement genetics, deficiencies, and disease associations. Protein Cell. 2012;3:487–96.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Morgan BP, Orren A. Vaccination against meningococcus in complement-deficient individuals. Clin Exp Immunol. 1998;114:327–9.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Nagata M, Hara T, Aoki T, Mizuno Y, Akeda H, Inaba S, Tsumoto K, Ueda K. Inherited deficiency of ninth component of complement: an increased risk of meningococcal meningitis. J Pediatr. 1989;11:260–4.CrossRefGoogle Scholar
  29. O’Neil KM. Complement deficiency. Clin Rev Allergy Immunol. 2000;19:83–108.CrossRefPubMedGoogle Scholar
  30. Orren A, Potter PC. Complement component C6 deficiency and susceptibility to Neisseria meningitidis infections. SAMJ. 2004;94(5):345–6.PubMedGoogle Scholar
  31. Orren A, Würzner R, Potter PC, Fernie BA, Coetzee S, Morgan BP, Lachmann PJ. Properties of a low molecular weight complement component C6 found in human subjects with subtotal C6 deficiency. Immunology. 1992;75:10–6.PubMedPubMedCentralGoogle Scholar
  32. Orren A, Caugant DA, Fijen CAP, Dankert J, van Schalkwyk EJ, Poolman JT, Coetzee GJ. Characterization of strains of Neisseria meningitides recovered from complement -normal and complement-deficient patients in the Cape, South Africa. J Clin Microbiol. 1994;32:2185–91.PubMedPubMedCentralGoogle Scholar
  33. Owen EP, Würzner R, Leisegang F, Rizkallah P, Whitelaw A, Simpson J, Thomas AD, Harris CL, Giles JL, Hellerud BC, Mollnes TE, Morgan BP, Potter PC, Orren A. A complement C5 gene mutation, c.754G>A:p.A252T, is common in the Western Cape, South Africa and found to be homozygous in seven percent of Black African meningococcal disease cases. Mol Immunol. 2015;64(1):170–6.CrossRefPubMedGoogle Scholar
  34. Pallares DE, Figueroa JE, Densen P, Giclas PC, Marschall GS. Invasive Haemophilus influenza type b infection in a child with familial deficiency of the beta subunit of the eigth component of complement. J Pediatr. 1996;128:102–3.CrossRefPubMedGoogle Scholar
  35. Pettigrew HD, Teuber SS, Gershwin E. Clinical significance of complement deficiencies. Ann N Y Acad Sci. 2009;1173:108–23.CrossRefPubMedGoogle Scholar
  36. Pickering MC, Botto M, Taylor P. Systemic lupus erythematosus, complement deficiency, and apoptosis. Adv Immunol. 2000;76:227–324.CrossRefPubMedGoogle Scholar
  37. Platonov AE, Beloborodor VB, Gabrilovitch DI, Khabarova VV, Serebrovskaya LV. Immunological evaluation of late complement component-deficient individuals. Clin Immunol Immunopathol. 1992;64(2):98–105.CrossRefPubMedGoogle Scholar
  38. Platonov AE, Beloborodov VB, Pavlova LI, Vershinina IV, Kayhty H. Vaccination of patients deficient in a late complement component with tetravalent meningococcal capsular polysaccharide vaccine. Clin Exp Immunol. 1995;100:32–9.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Platonov AE, Beloborodov VB, Vershinina IV. Meningococcal disease in patients with late complement component deficiency: studies in the U.S.S.R. Medicine. 1993;72(6):374–92.CrossRefPubMedGoogle Scholar
  40. Platonov AE, Vershinina IV, Kuijper EJ, Borrow R, Käyhty H. Long term effects of vaccination of patients deficienct in a late complemente componente with a tetravalente meningococcal polysaccharide vaccine. Vaccine. 2003;11:4437–47.CrossRefGoogle Scholar
  41. Potter PC, Frasch CE, van der Sande WJM, Cooper RC, Patel Y, Orren A. Prophylaxis against Neisseria meningitidis infections and antibody responses in patients with deficiency of the sixth component of complement. J Infect Dis. 1990;161:932–7.CrossRefPubMedGoogle Scholar
  42. Ram S, Lewis LA, Rice PA. Infections of people with complement deficiencies and patients who have undergone splenectomy. Clin Microbiol Rev. 2010;23:740–80.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Rosa DD, Pasqualotto AC, de Quadros M, Prezzi SH. Deficiency of the eighth component of complement associated with recurrent meningococcal meningitis – case report and literature review. Braz J Infect Dis. 2004;8(4):328–30.CrossRefPubMedGoogle Scholar
  44. Ross SC, Densen P. Complement deficiency states and infection: epidemiology, pathogenesis and consequences of neisserial and other infections in an immune deficiency. Medicine (Baltimore). 1984;63(5):243–73.CrossRefGoogle Scholar
  45. Schejbel L, Fadnes D, Permin H, Lappegård KT, Garred P, Mollnes TE. Primary complement C5 deficiencies – molecular characterization and clinical review of two families. Immunobiology. 2013;218(10):1304–10.CrossRefPubMedGoogle Scholar
  46. Schlesinger M, Grienberg R, Levy J, Kayhty H, Levy R. Killing of meningococci by neutrophils: effect of vaccination on patients with complement deficiency. J Infect Dis. 1994;170:449–53.CrossRefPubMedGoogle Scholar
  47. Schwartz B. Chemoprophylaxis for bacterial infections: principles and application to meningococcal infections. Rev Infect Dis. 1991;13(Suppl. 2):S170–3.CrossRefPubMedGoogle Scholar
  48. Sjöholm AG, Jönsson G, Braconier JH, Sturfelt G, Truedsson L. Complement deficiency and disease: an update. Mol Immunol. 2006;43(1–2):78–85.CrossRefPubMedGoogle Scholar
  49. Skattum L, van Deuren M, van der Poll T, Truedsson L. Complement deficiency states and associated infections. Mol Immunol. 2011;48:1643–55.CrossRefPubMedGoogle Scholar
  50. Tedesco F. Component deficiencies. The eighth component. Prog Allergy. 1986;39:295–306.Google Scholar
  51. Turley AJ, Gathmann B, Bangs C, Bradbury M, Seneviratne S, Gonzalez-Granado LI, et al. Spectrum and management of complement immunodeficiencies (excluding hereditary angioedema) across Europe. J Clin Immunol. 2015; doi:10.1007/s10875-015-0137-5.PubMedGoogle Scholar
  52. Walport MJ. Inherited complemente deficiency – clues to the physiological activity of complemente in vivo. Q J Med. 1993;86:355–8.PubMedGoogle Scholar
  53. Würzner R, Orren A, Potter P, Morgan BP, Ponard D, Späth P, Brai M, Schulze M, Happe L, Götze O. Functionally active complement proteins C6 and C7 detected in C6- or C7-deficient individuals. Clin Exp Immunol. 1991;83:430–7.CrossRefPubMedPubMedCentralGoogle Scholar
  54. Würzner R, Orren A, Lachmann PJ. Inherited deficiencies of the terminal components of human complement. Immunodefic Rev. 1992;3:123–47.PubMedGoogle Scholar
  55. Würzner R, Hobart MJ, Fernie BA, Mewar D, Potter PC, Orren A, Lachmann PJ. Molecular basis of subtotal complement C6 deficiency a carboxy-terminally truncated but functionally active C6. J Clin Invest. 1995;95:1877–83.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Würzner R, Witzel-Schlömp K, Tokunaga K, Fernie BA, Hobart MJ, Orren A. Reference typing report for complement componentes C6, C7 and C9 including mutations leading to deficiencies. Exp Clin Immunogenet. 1998;15:268–85.CrossRefPubMedGoogle Scholar
  57. Yoshioka K, Takemura T, Akano N, Okada M, Yagi K, Maki S, Inai S, Akita H, Koitabashi Y, Takekoshi Y. IgA nephropathy in patients with congenital C9 deficiency. Kidney Int. 1992;42(5):1253–8.CrossRefPubMedGoogle Scholar
  58. Zhu Z, Atkinson TP, Hovanky KJ, Boppana SB, Dai YL, Densen P, Go RC, Jablecki JS, Volanakis JE. High prevalence of complement component C6 deficiency among African-Americans in the South-Eastern USA. Clin Exp Immunol. 2000;119:305–10.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2016

Authors and Affiliations

  1. 1.Faculdade de Medicina ABCSanto AndreBrazil

Section editors and affiliations

  • Kathleen Sullivan
    • 1
  1. 1.University of PennsylvaniaPhiladelphiaUSA