Skip to main content

BCG and Novel Tuberculosis Vaccine Candidates in the Context of Immunodeficiencies

  • Living reference work entry
  • First Online:
Encyclopedia of Medical Immunology
  • 55 Accesses

Definitions

Tuberculosis: a chronic infectious disease caused by a bacterial pathogen which is a global health threat.

Vaccination: introduction of foreign material to induce a protective immune response against a pathogen or the disease it causes.

Subunit vaccine: a material composed of selected antigens to protect against the pathogen or the disease it causes. Generally given together with an adjuvant or expressed by a viral vector.

Antigen: material that is recognized by the immune response.

Adjuvant: material that improves the immune response against antigen.

Viral vector: a virus which expresses antigens.

Killed bacterial vaccine: a killed bacterial pathogen used as vaccine.

Live bacterial vaccine: an attenuated bacterium used as vaccine.

Attenuation: process by which a pathogen loses its capacity to cause disease, but maintains its capacity to stimulate immunity.

Immunity: host response against invading microbes or antigens introduced into the host.

Preventive vaccine: a vaccine...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abel B, Tameris M, Mansoor N, et al. The novel tuberculosis vaccine, AERAS-402, induces robust and polyfunctional CD4+ and CD8+ T cells in adults. Am J Respir Crit Care Med. 2010;181:1407–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abu-Raddad LJ, Sabatelli L, Achterberg JT, et al. Epidemiological benefits of more-effective tuberculosis vaccines, drugs, and diagnostics. Proc Natl Acad Sci U S A. 2009;106:13980–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aguilo N, Gonzalo-Asensio J, Alvarez-Arguedas S, et al. Reactogenicity to major tuberculosis antigens absent in BCG is linked to improved protection against Mycobacterium tuberculosis. Nat Commun. 2017;8:16085.

    Article  PubMed  PubMed Central  Google Scholar 

  • All-Party Parliamentary Group on Global Tuberculosis. The price of a pandemic: counting the cost of MDR-TB. London. 2015. http://www.appg-tb.org.uk/#!publications/cghg

  • Andersen P, Kaufmann SH. Novel vaccination strategies against tuberculosis. Cold Spring Harb Perspect Med. 2014;4:pii: a018523.

    Article  CAS  Google Scholar 

  • Andersen P, Scriba TJ. Moving tuberculosis vaccines from theory to practice. Nat Rev Immunol. 2019; https://doi.org/10.1038/s41577-41019-40174-z.

  • Barry CE 3rd, Boshoff HI, Dartois V, et al. The spectrum of latent tuberculosis: rethinking the biology and intervention strategies. Nat Rev Microbiol. 2009;7:845–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bertholet S, Ireton GC, Ordway DJ, et al. A defined tuberculosis vaccine candidate boosts BCG and protects against multidrug-resistant Mycobacterium tuberculosis. Sci Transl Med. 2010;2:53ra74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Butov DA, Efremenko YV, Prihoda ND, et al. Randomized, placebo-controlled phase II trial of heat-killed Mycobacterium vaccae (Immodulon batch) formulated as an oral pill (V7). Immunotherapy. 2013;5:1047–54.

    Article  CAS  PubMed  Google Scholar 

  • Calmette A, Guérin C, Boquet A, et al. La vaccination préventive contre la tuberculose par le “BCG”. Paris: Masson et Cie; 1927. p. 1–250.

    Google Scholar 

  • Churchyard GJ, Snowden MA, Hokey D, et al. The safety and immunogenicity of an adenovirus type 35-vectored TB vaccine in HIV-infected, BCG-vaccinated adults with CD4(+) T cell counts >350 cells/mm(3). Vaccine. 2015;33:1890–6.

    Article  CAS  PubMed  Google Scholar 

  • Colditz GA, Brewer TF, Berkey CS, et al. Efficacy of BCG vaccine in the prevention of tuberculosis. Meta-analysis of the published literature. JAMA. 1994;271:698–702.

    Article  CAS  PubMed  Google Scholar 

  • Colditz GA, Berkey CS, Mosteller F, et al. The efficacy of bacillus Calmette-Guerin vaccination of newborns and infants in the prevention of tuberculosis: meta-analyses of the published literature. Pediatrics. 1995;96:29–35.

    CAS  PubMed  Google Scholar 

  • Dantas OM, Ximenes RA, De Albuquerque MF, et al. A case-control study of protection against tuberculosis by BCG revaccination in Recife, Brazil. Int J Tuberc Lung Dis. 2006;10:536–41.

    CAS  PubMed  Google Scholar 

  • De Bruyn G, Garner P. Mycobacterium vaccae immunotherapy for treating tuberculosis. Cochrane Database Syst Rev. 2003;1:CD001166.

    Google Scholar 

  • Deng W, Xie J. Ins and outs of Mycobacterium tuberculosis PPE family in pathogenesis and implications for novel measures against tuberculosis. J Cell Biochem. 2012;113:1087–95.

    Article  CAS  PubMed  Google Scholar 

  • Diel R, Goletti D, Ferrara G, et al. Interferon-gamma release assays for the diagnosis of latent Mycobacterium tuberculosis infection: a systematic review and meta-analysis. Eur Respir J. 2011;37:88–99.

    Article  CAS  PubMed  Google Scholar 

  • Duncan CJ, Hambleton S. Host genetic factors in susceptibility to mycobacterial disease. Clin Med. 2014;14(Suppl 6):s17–21.

    Article  Google Scholar 

  • Efremenko YV, Butov DA, Prihoda ND, et al. Randomized, placebo-controlled phase II trial of heat-killed Mycobacterium vaccae (Longcom batch) formulated as an oral pill (V7). Hum Vaccin Immunother. 2013;9:1852–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eibl MM, Wolf HM. Vaccination in patients with primary immune deficiency, secondary immune deficiency and autoimmunity with immune regulatory abnormalities. Immunotherapy. 2015;7:1273–92.

    Article  CAS  PubMed  Google Scholar 

  • Ewa Anna B, Beata W-K, Malgorzata P, et al. Disseminated bacillus Calmette-Guérin infection and immunodeficiency. Emerg Infect Dis. 2007;13:799–801.

    Article  Google Scholar 

  • Flynn JL, Gideon HP, Mattila JT, et al. Immunology studies in non-human primate models of tuberculosis. Immunol Rev. 2015;264:60–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geldenhuys H, Mearns H, Miles DJ, et al. The tuberculosis vaccine H4:IC31 is safe and induces a persistent polyfunctional CD4 T cell response in South African adults: a randomized controlled trial. Vaccine. 2015;33:3592–9.

    Article  CAS  PubMed  Google Scholar 

  • Gengenbacher M, Kaufmann SHE. Mycobacterium tuberculosis: success through dormancy. FEMS Microbiol Rev. 2012;36:514–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ginsberg AM. Designing tuberculosis vaccine efficacy trials – lessons from recent studies. Expert Rev Vaccines. 2019;18:423–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Global Tuberculosis Report. World Health Organization. 2018. www.who.int/tb/publications/global_report/en/

  • Grode L, Seiler P, Baumann S, et al. Increased vaccine efficacy against tuberculosis of recombinant Mycobacterium bovis bacille Calmette-Guérin mutants that secrete listeriolysin. J Clin Invest. 2005;115:2472–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grode L, Ganoza CA, Brohm C, et al. Safety and immunogenicity of the recombinant BCG vaccine VPM1002 in a phase 1 open-label randomized clinical trial. Vaccine. 2013;31:1340–8.

    Article  CAS  PubMed  Google Scholar 

  • Groschel MI, Prabowo SA, Cardona PJ, et al. Therapeutic vaccines for tuberculosis – a systematic review. Vaccine. 2014;32:3162–8.

    Article  PubMed  CAS  Google Scholar 

  • Hokey D, O’dee DM, Graves A, et al. Heterologous prime-boost with Ad35/AERAS-402 and MVA85A elicits potent CD8+ T cell immune responses in a phase I clinical trial (VAC7P.969). J Immunol. 2014;192:141.114.

    Google Scholar 

  • Houghton J, Cortes T, Schubert O, et al. A small RNA encoded in the Rv2660c locus of Mycobacterium tuberculosis is induced during starvation and infection. PLoS One. 2013;8:e80047.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jacobs AJ, Mongkolsapaya J, Screaton GR, et al. Antibodies and tuberculosis. Tuberculosis. 2016;101:102–13.

    Article  CAS  PubMed  Google Scholar 

  • Karonga Prevention Trial Group. Randomised controlled trial of single BCG, repeated BCG, or combined BCG and killed Mycobacterium leprae vaccine for prevention of leprosy and tuberculosis in Malawi. Lancet. 1996;348:17–24.

    Article  CAS  Google Scholar 

  • Kaufmann SH. Future vaccination strategies against tuberculosis: thinking outside the box. Immunity. 2010;33:567–77.

    Article  CAS  PubMed  Google Scholar 

  • Kaufmann SHE. Tuberculosis vaccines: time to think about the next generation. Semin Immunol. 2013;25:172–81.

    Article  CAS  PubMed  Google Scholar 

  • Kaufmann SHE, Winau F. From bacteriology to immunology: the dualism of specificity. Nat Immunol. 2005;6:1063–6.

    Article  CAS  PubMed  Google Scholar 

  • Kaufmann SH, Evans TG, Hanekom WA. Tuberculosis vaccines: time for a global strategy. Sci Transl Med. 2015;7:276fs278.

    Article  CAS  Google Scholar 

  • Kumarasamy N, Poongulali S, Bollaerts A, et al. A randomized, controlled safety, and immunogenicity trial of the M72/AS01 candidate tuberculosis vaccine in HIV-positive Indian adults. Medicine. 2016;95:1–10.

    Article  CAS  Google Scholar 

  • Li H, Javid B. Antibodies and tuberculosis: finally coming of age? Nat Rev Immunol. 2018;18:591–6.

    Article  CAS  PubMed  Google Scholar 

  • Lin PL, Ford CB, Coleman MT, et al. Sterilization of granulomas is common in active and latent tuberculosis despite within-host variability in bacterial killing. Nat Med. 2014;20:75–9.

    Article  CAS  PubMed  Google Scholar 

  • Loxton AG, Knaul JK, Grode L et al. Safety and immunogenicity of the recombinant mycobacterium bovis BCG vaccine VPM1002 in HIV-unexposed newborn infants in South Africa. Clin Vaccine Immunol. 2017;24:e00439–16.

    Google Scholar 

  • Lu LL, Chung AW, Rosebrock TR, et al. A functional role for antibodies in tuberculosis. Cell. 2016;167:433.e414–43.e414.

    Article  CAS  Google Scholar 

  • Lu LL, Smith MT, Yu KKQ, et al. IFN-gamma-independent immune markers of Mycobacterium tuberculosis exposure. Nat Med. 2019;25:977–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luabeya AK, Kagina BM, Tameris MD, et al. First-in-human trial of the post-exposure tuberculosis vaccine H56:IC31 in Mycobacterium tuberculosis infected and non-infected healthy adults. Vaccine. 2015;33:4130–40.

    Article  CAS  PubMed  Google Scholar 

  • Manjaly Thomas Z-R, Satti I, Marshall JL, et al. Alternate aerosol and systemic immunisation with a recombinant viral vector for tuberculosis, MVA85A: a phase I randomised controlled trial. PLoS Med. 2019;16:e1002790.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mayosi BM, Ntsekhe M, Bosch J, et al. Prednisolone and Mycobacterium indicus pranii in tuberculous pericarditis. N Engl J Med. 2014;371:1121–30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Michelsen SW, Soborg B, Koch A, et al. The effectiveness of BCG vaccination in preventing Mycobacterium tuberculosis infection and disease in Greenland. Thorax. 2014;69:851–6.

    Article  CAS  PubMed  Google Scholar 

  • Minassian AM, Satti I, Poulton ID, et al. A human challenge model for Mycobacterium tuberculosis using Mycobacterium bovis bacille Calmette-Guerin. J Infect Dis. 2012;205:1035–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mirsaeidi M, Sadikot RT. Patients at high risk of tuberculosis recurrence. Int J Mycobacteriol. 2018;7:1–6.

    Article  PubMed  Google Scholar 

  • Ndiaye BP, Thienemann F, Ota M, et al. Safety, immunogenicity, and efficacy of the candidate tuberculosis vaccine MVA85A in healthy adults infected with HIV-1: a randomised, placebo-controlled, phase 2 trial. Lancet Respir Med. 2015;3:190–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nell AS, D’lom E, Bouic P, et al. Safety, tolerability, and immunogenicity of the novel antituberculous vaccine RUTI: randomized, placebo-controlled phase II clinical trial in patients with latent tuberculosis infection. PLoS One. 2014;9:e89612.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nemes E, Geldenhuys H, Rozot V, et al. Prevention of M. tuberculosis infection with H4:IC31 vaccine or BCG revaccination. N Engl J Med. 2018;379:138–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nieuwenhuizen NE, Kulkarni PS, Shaligram U, et al. The recombinant bacille Calmette-Guerin vaccine VPM1002: ready for clinical efficacy testing. Front Immunol. 2017;8:1147.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Norouzi S, Aghamohammadi A, Mamishi S, et al. Bacillus Calmette-Guerin (BCG) complications associated with primary immunodeficiency diseases. J Inf Secur. 2012;64:543–54.

    Google Scholar 

  • Nunes-Santos CJ, Rosenzweig SD. Bacille Calmette-Guerin complications in newly described primary immunodeficiency diseases: 2010–2017. Front Immunol. 2018;9:1423.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • O’Garra A, Redford PS, Mcnab FW, et al. The immune response in tuberculosis. Annu Rev Immunol. 2013;31:475–527.

    Article  PubMed  CAS  Google Scholar 

  • Ottenhoff TH, Kaufmann SH. Vaccines against tuberculosis: where are we and where do we need to go? PLoS Pathog. 2012;8:e1002607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ottenhoff TH, Ellner JJ, Kaufmann SH. Ten challenges for TB biomarkers. Tuberculosis. 2012;92(Suppl 1):S17–20.

    Article  PubMed  Google Scholar 

  • Pai M, Behr MA, Dowdy D, et al. Tuberculosis. Nat Rev Dis Primers. 2016;2:16076.

    Article  PubMed  Google Scholar 

  • Penn-Nicholson A, Geldenhuys H, Burny W, et al. Safety and immunogenicity of candidate vaccine M72/AS01E in adolescents in a TB endemic setting. Vaccine. 2015;33:4025–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Penn-Nicholson A, Tameris M, Smit E, et al. Safety and immunogenicity of the novel tuberculosis vaccine ID93 + GLA-SE in BCG-vaccinated healthy adults in South Africa: a randomised, double-blind, placebo-controlled phase 1 trial. Lancet Respir Med. 2018;6:287–98.

    Article  CAS  PubMed  Google Scholar 

  • Poyhonen L, Bustamante J, Casanova JL, et al. Life-threatening infections due to live-attenuated vaccines: early manifestations of inborn errors of immunity. J Clin Immunol. 2019;39:376–90.

    Article  PubMed  PubMed Central  Google Scholar 

  • Principi N, Esposito S. Vaccine use in primary immunodeficiency disorders. Vaccine. 2014;32:3725–31.

    Article  CAS  PubMed  Google Scholar 

  • Ronacher K, Joosten SA, Van Crevel R, et al. Acquired immunodeficiencies and tuberculosis: focus on HIV/AIDS and diabetes mellitus. Immunol Rev. 2015;264:121–37.

    Article  CAS  PubMed  Google Scholar 

  • Rosser A, Marx FM, Pareek M. Recurrent tuberculosis in the pre-elimination era. Int J Tuberc Lung Dis. 2018;22:139–50.

    Article  CAS  PubMed  Google Scholar 

  • Roy A, Eisenhut M, Harris RJ, et al. Effect of BCG vaccination against Mycobacterium tuberculosis infection in children: systematic review and meta-analysis. BMJ. 2014;349:g4643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sadoff JC, Wittes J. Correlates, surrogates, and vaccines. J Infect Dis. 2007;196:1279–81.

    Article  PubMed  Google Scholar 

  • Satti I, Meyer J, Harris SA, et al. Safety and immunogenicity of a candidate tuberculosis vaccine MVA85A delivered by aerosol in BCG-vaccinated healthy adults: a phase 1, double-blind, randomised controlled trial. Lancet Infect Dis. 2014;14:939–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sauerwein RW, Roestenberg M, Moorthy VS. Experimental human challenge infections can accelerate clinical malaria vaccine development. Nat Rev Immunol. 2011;11:57–64.

    Article  CAS  PubMed  Google Scholar 

  • Sergeeva MV, Pulkina AA, Vasiliev KA, et al. Safety and immunogenicity of cold-adapted recombinant influenza vector expressing ESAT-6 and Ag85A antigens of M. tuberculosis. Vopr Virusol. 2017;62:266–72.

    Article  Google Scholar 

  • Sharma SK, Katoch K, Sarin R, et al. Efficacy and safety of Mycobacterium indicus pranii as an adjunct therapy in Category II pulmonary tuberculosis in a randomized trial. Sci Rep. 2017;7:3354.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Smaill F, Jeyanathan M, Smieja M, et al. A human type 5 adenovirus-based tuberculosis vaccine induces robust T cell responses in humans despite preexisting anti-adenovirus immunity. Sci Transl Med. 2013;5:205ra134.

    Article  PubMed  CAS  Google Scholar 

  • Soysal A, Millington KA, Bakir M, et al. Effect of BCG vaccination on risk of Mycobacterium tuberculosis infection in children with household tuberculosis contact: a prospective community-based study. Lancet. 2005;366:1443–51.

    Article  PubMed  Google Scholar 

  • Spertini F, Audran R, Chakour R, et al. Safety of human immunisation with a live-attenuated Mycobacterium tuberculosis vaccine: a randomised, double-blind, controlled phase I trial. Lancet Respir Med. 2015;3:953–62.

    Article  CAS  PubMed  Google Scholar 

  • Spring M, Polhemus M, Ockenhouse C. Controlled human malaria infection. J Infect Dis. 2014;209(Suppl 2):S40–5.

    Article  PubMed  Google Scholar 

  • Stop TB Partnership. The global plan to stop TB 2016–2020. WHO. 2015. www.stoptb.org/assets/documents/global/plan/GlobalPlanToEndTB_TheParadigmShift_2016-2020_StopTBPartnership.pdf

  • Stylianou E, Griffiths KL, Poyntz HC, et al. Improvement of BCG protective efficacy with a novel chimpanzee adenovirus and a modified vaccinia Ankara virus both expressing Ag85A. Vaccine. 2015;33:6800–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suliman S, Thompson E, Sutherland J, et al. Four-gene pan-African blood signature predicts progression to tuberculosis. Am J Respir Crit Care Med. 2018;197:1198–208.

    Article  CAS  PubMed Central  Google Scholar 

  • Suliman S, Luabeya AKK, Geldenhuys H, et al. Dose optimization of H56:IC31 vaccine for tuberculosis-endemic populations. A double-blind, placebo-controlled, dose-selection trial. Am J Respir Crit Care Med. 2019;199:220–31.

    Article  CAS  PubMed  Google Scholar 

  • Talbot EA, Perkins MD, Silva SF, et al. Disseminated bacille Calmette-Guerin disease after vaccination: case report and review. Clin Infect Dis. 1997;24:1139–46.

    Article  CAS  PubMed  Google Scholar 

  • Tameris MD, Hatherill M, Landry BS, et al. Safety and efficacy of MVA85A, a new tuberculosis vaccine, in infants previously vaccinated with BCG: a randomised, placebo-controlled phase 2b trial. Lancet. 2013;381:1021–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tameris M, Hokey DA, Nduba V, et al. A double-blind, randomised, placebo-controlled, dose-finding trial of the novel tuberculosis vaccine AERAS-402, an adenovirus-vectored fusion protein, in healthy, BCG-vaccinated infants. Vaccine. 2015;33:2944–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • The End TB Strategy. World Health Organization. 2015. http://www.who.int/tb/strateg/end-tb/en/

  • Townsend MJ, Arron JR. Reducing the risk of failure: biomarker-guided trial design. Nat Rev Drug Discov. 2016;15:517–8.

    Article  CAS  PubMed  Google Scholar 

  • Ulrichs T, Kaufmann SHE. New insights into the function of granulomas in human tuberculosis. J Pathol. 2006;208:261–9.

    Article  CAS  PubMed  Google Scholar 

  • Van Der Meeren O, Hatherill M, Nduba V, et al. Phase 2b controlled trial of M72/AS01E vaccine to prevent tuberculosis. N Engl J Med. 2018;379:1621–34.

    Article  Google Scholar 

  • Van Dissel JT, Arend SM, Prins C, et al. Ag85B-ESAT-6 adjuvanted with IC31 promotes strong and long-lived Mycobacterium tuberculosis specific T cell responses in naive human volunteers. Vaccine. 2010;28:3571–81.

    Article  PubMed  CAS  Google Scholar 

  • Van Dissel JT, Joosten SA, Hoff ST, et al. A novel liposomal adjuvant system, CAF01, promotes long-lived Mycobacterium tuberculosis-specific T-cell responses in human. Vaccine. 2014;32:7098–107.

    Article  PubMed  CAS  Google Scholar 

  • Verrall AJ, Alisjahbana B, Apriani L, et al. Early clearance of Mycobacterium tuberculosis: the INFECT case contact cohort study in Indonesia. J Infect Dis. 2019a; https://doi.org/10.1093/infdis/jiz168.

  • Verrall AJ, Schneider M, Alisjahbana B, et al. Early clearance of Mycobacterium tuberculosis is associated with increased innate immune responses. J Infect Dis. 2019b; https://doi.org/10.1093/infdis/jiz147.

  • Vilaplana C, Montane E, Pinto S, et al. Double-blind, randomized, placebo-controlled phase I clinical trial of the therapeutical antituberculous vaccine RUTI. Vaccine. 2010;28:1106–16.

    Article  CAS  PubMed  Google Scholar 

  • Von Reyn CF, Mtei L, Arbeit RD, et al. Prevention of tuberculosis in bacille Calmette-Guerin-primed, HIV-infected adults boosted with an inactivated whole-cell mycobacterial vaccine. AIDS. 2010;24:675–85.

    Article  Google Scholar 

  • Von Reyn CF, Lahey T, Arbeit RD, et al. Safety and immunogenicity of an inactivated whole cell tuberculosis vaccine booster in adults primed with BCG: a randomized, controlled trial of DAR-901. PLoS One. 2017;12:e0175215.

    Article  CAS  Google Scholar 

  • Walker KB, Brennan MJ, Ho MM, et al. The second Geneva consensus: recommendations for novel live TB vaccines. Vaccine. 2010;28:2259–70.

    Article  CAS  PubMed  Google Scholar 

  • Walsh DS, Owira V, Polhemus M, et al. Adenovirus type 35-vectored tuberculosis vaccine has an acceptable safety and tolerability profile in healthy, BCG-vaccinated, QuantiFERON (R)-TB Gold (+) Kenyan adults without evidence of tuberculosis. Vaccine. 2016;34:2430–6.

    Article  CAS  PubMed  Google Scholar 

  • Weiner J 3rd, Kaufmann SH. Recent advances towards tuberculosis control: vaccines and biomarkers. J Intern Med. 2014;275:467–80.

    Article  PubMed  PubMed Central  Google Scholar 

  • Weiner J 3rd, Maertzdorf J, Sutherland JS, et al. Metabolite changes in blood predict the onset of tuberculosis. Nat Commun. 2018;9:5208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weng H, Huang J-Y, Meng X-Y, et al. Adjunctive therapy of Mycobacterium vaccae vaccine in the treatment of multidrug-resistant tuberculosis: a systematic review and meta-analysis. Biomed Rep. 2016;4:595–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang XY, Chen QF, Li YP, et al. Mycobacterium vaccae as adjuvant therapy to anti-tuberculosis chemotherapy in never-treated tuberculosis patients: a meta-analysis. PLoS One. 2011;6:e23826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zak DE, Penn-Nicholson A, Scriba TJ, et al. A blood RNA signature for tuberculosis disease risk: a prospective cohort study. Lancet. 2016;387:2312–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zumla AI, Gillespie SH, Hoelscher M, et al. New antituberculosis drugs, regimens, and adjunct therapies: needs, advances, and future prospects. Lancet Infect Dis. 2014;14:327–40.

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of Interest

SHEK is coinventor of a vaccine against tuberculosis (VPM1002) currently undergoing clinical trial testing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan H. E. Kaufmann .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kaufmann, S.H.E. (2020). BCG and Novel Tuberculosis Vaccine Candidates in the Context of Immunodeficiencies. In: MacKay, I., Rose, N. (eds) Encyclopedia of Medical Immunology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9209-2_210-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9209-2_210-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-9209-2

  • Online ISBN: 978-1-4614-9209-2

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics