Damage Prediction in Metal Forming Process Modeling and Optimization: Simplified Approaches

  • Ying-Qiao Guo
  • Yuming Li
  • Boussad Abbès
  • Hakim Naceur
  • Ali Halouani
Living reference work entry


Some simplified numerical methods for damage predictions in metal forming process modeling and optimization are presented in this chapter. The incremental approaches including advanced damage models lead to accurate results, but the simulations are tedious and time-consuming. An efficient solving algorithm called inverse approach (IA) allows the fast modeling of forming processes in only one step between the known final part and the initial blank, avoiding the contact treatment and the incremental plastic integration. To improve the stress estimation in the IA, the so-called pseudo-inverse approach (PIA) has been developed. Some intermediate configurations are geometrically created and corrected by a free surface method to consider the deformation path, and the plastic integration based on the flow theory is carried out incrementally to consider the loading history. A simplified 3D strain-based damage model is coupled with the plasticity and implemented into a direct scalar integration algorithm of plasticity (without local iterations), which makes the plastic integration very fast and robust even for very large strain increments. These simplified approaches lead to very fast and useful numerical tools in the preliminary design and optimization.


Damage Model Equivalent Stress Equivalent Plastic Strain Tube Hydroforming Pareto Point 


  1. N. Aravas, The analysis of void growth that leads to central burst during extrusion. J. Mech. Phys. Solid 34, 55–79 (1986)CrossRefGoogle Scholar
  2. M. Azaouzi, H. Naceur, A. Delameziere, J.L. Batoz, S. Belouettar, An heuristic optimization algorithm for the blank shape design of high precision metallic parts obtained by a particular stamping process. Finite Elem. Anal. Des. 44, 842–850 (2008)CrossRefGoogle Scholar
  3. F. Barlat, J.C. Brem, J.W. Yoon, K. Chung, R.E. Dick, D.J. Lege, F. Pourboghrat, S.–.H. Choi, E. Chu, Plane stress yield function for aluminum alloy sheets–Part I: theory. Int. J. Plast. 19, 1297–1319 (2003)CrossRefMATHGoogle Scholar
  4. J.L. Batoz, G. Dhatt, Modélisation des structures par éléments fini, vol. 1, 3 (Edition HERMES, Paris, 1990)Google Scholar
  5. P. Breitkopf, H. Naceur, A. Rassineux, P. Villon, Moving least squares response surface approximation: formulation and metal forming applications. Comput. Struct. 83(17–18), 1411–1428 (2005)CrossRefGoogle Scholar
  6. M. Brunet, F. Sabourin, S. Mguil-Touchal, The prediction of necking and failure in 3d sheet forming analysis using damage variable. J. Phys. III 6, 473–482 (1996)Google Scholar
  7. F. Castro Catarina, C. António Carlos, C. Sousa Luisa, Pareto-based multi-objective hot forging optimization using a genetic algorithm, in 2nd International Conference on Engineering Optimization, Lisbon, 2010Google Scholar
  8. J.L. Chaboche, Continuum damage mechanics I-general concepts. II-damage growth, crack initiation, and crack growth. ASME Trans. J. Appl. Mech. 55, 59–72 (1988)CrossRefGoogle Scholar
  9. M. Chebbah, H. Naceur, A. Gakwaya, A fast algorithm for strain prediction in tube hydroforming based on one-step inverse approach. J. Mater. Process. Technol. 211(11), 1898–1906 (2011)CrossRefGoogle Scholar
  10. A. Cherouat, Y.Q. Guo, K. Saanouni, Y.M. Li, K. Debray, G. Loppin, Incremental versus inverse numerical approaches for ductile damage prediction in sheet metal forming. Int. J. Form. Process. 7(1–2), 99–122 (2004)CrossRefGoogle Scholar
  11. J.P. Cordebois, P. Ladevèze, Necking criterion applied in sheet metal forming, in Plastic Behavior of Anisotropic Solids, ed. by J.P. Boehler (Editions CNRS, Paris, 1985)Google Scholar
  12. K. Deb, An efficient constraint handling method for genetic algorithms. Comput. Method Appl. Mech. Eng. 186(2–4), 311–338 (2000)CrossRefMATHGoogle Scholar
  13. M. Dong, K. Debray, Y.Q. Guo, J.L. Shan, Design and optimization of addendum surfaces in sheet metal forming process. Int. J. Comput. Method. Eng. Sci. Mech. 8(4), 211–222 (2007)CrossRefMATHGoogle Scholar
  14. M. Emmerich, K. Giannakoglou, B. Naujoks, Single- and multiobjective evolutionary optimization assisted by Gaussian random field metamodels. IEEE Trans. Evolut. Comput. 10(4), 421–439 (2006)CrossRefGoogle Scholar
  15. L. Fourment, T. Balan, J.L. Chenot, Optimal design for nonsteady-state metal forming processes – I shape optimization method. Int. J. Numer. Method Eng. 39(1), 33–65 (1996)CrossRefMATHGoogle Scholar
  16. J.C. Gelin, J. Oudin, Y. Ravalard, An imposed finite element method for the analysis of damage and ductile fracture in cold metal forming processes. Ann CIRP 34(1), 209–213 (1985)CrossRefGoogle Scholar
  17. J.C. Gelin, C. Labergère, S. Thibaud, Recent advances in process optimization and control for the design of sheet and tube hydroforming processes, in Numisheet, Detroit, edited by L.M. Smith et al., Vol. A, pp. 825–830, 2005Google Scholar
  18. Y.Q. Guo, J.L. Batoz, J.M. Detraux, P. Duroux, Finite element procedures for strain estimations of sheet metal forming parts. Int. J. Numer. Method Eng. 30, 1385–1401 (1990)CrossRefMATHGoogle Scholar
  19. Y.Q. Guo, W. Gati, H. Naceur, J.L. Batoz, An efficient DKT rotation free shell element for springback simulation in sheet metal forming. Comput. Struct. 80(27–30), 2299–2312 (2002)CrossRefGoogle Scholar
  20. Y.Q. Guo, Y.M. Li, F. Bogard, K. Debray, An efficient pseudo-inverse approach for damage modeling in the sheet forming process. J. Mater. Process. Technol. 151(1–3), 88–97 (2004)CrossRefGoogle Scholar
  21. A.L. Gurson, Porous rigid-plastic materials containing rigid inclusions – yield function, plastic potential and void nucleation, in Proceedings of the Conference on Fracture, vol. 2, pp. 357–364, 1977Google Scholar
  22. A. Halouani, Y.M. Li, B. Abbès, Y.Q. Guo, An axisymmetric inverse approach for cold forging modelling. Eng. Lett. 18(4), 376–383 (2010)Google Scholar
  23. A. Halouani, Y.M. Li, B. Abbès, Y.Q. Guo, Simulation of axi-symmetrical cold forging process by efficient pseudo inverse approach and direct algorithm of plasticity. Finite Elem. Anal. Des. 61, 85–96 (2012a)CrossRefMathSciNetGoogle Scholar
  24. A. Halouani, Y.M. Li, B. Abbès, Y.Q. Guo, F.J. Meng, C. Labergere, P. Lafon, Optimization of forging preforms by using pseudo inverse approach. Key Eng. Mater. 504–506, 613–618 (2012b)CrossRefGoogle Scholar
  25. C.S. Han, R.V. Grandhi, R. Srinivasan, Optimum design of forging die shapes using nonlinear finite element analysis. AIAA J. 31(4), 774–781 (1993)CrossRefGoogle Scholar
  26. P. Hartley, S.E. Clift, J. Salimi, C.E.N. Sturgess, I. Pillinger, The prediction of ductile fracture initiation in metalforming using a finite element method and various fracture criteria. Res. Mech. 28, 269–293 (1989)Google Scholar
  27. T. Jansson, A. Anderson, L. Nilsson, Optimization of draw-in for an automotive sheet metal part: an evaluation using surrogate models and response surfaces. J. Mater. Process. Technol. 159(3), 426–434 (2005)CrossRefGoogle Scholar
  28. M. Jansson, L. Nilsson, K. Simonsson, Tube hydroforming of aluminium extrusions using a conical die and extensive feeding. J. Mater. Process. Technol. 198(1–3), 14–21 (2008)CrossRefGoogle Scholar
  29. N. Kim, S. Kobayashi, Preform design in H-shape cross section axisymmetric forging by finite element method. Int. J. Mach. Tool Manuf. 30, 243–268 (1990)CrossRefGoogle Scholar
  30. S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science, New Series. 220(4598), 671–680 (1983)Google Scholar
  31. S. Kobayashi, S.I. Oh, T. Altan, Metal Forming and Finite Element Method (Oxford University Press, Oxford, 1989)Google Scholar
  32. C.H. Lee, H. Huh, Blank design and strain estimation for sheet metal forming processes by a finite element inverse approach with initial guess of linear deformation. J. Mater. Process. Technol. 82, 145–155 (1998)CrossRefGoogle Scholar
  33. H. Lee, K.E. Peng, J. Wang, An anisotropic damage criterion for deformation instability and its application to forming limit analysis of metal plates. Eng. Fract. Mech. 21(5), 1031–1054 (1985)CrossRefGoogle Scholar
  34. J. Lemaître, J.L. Chaboche, Mechanics of Solid Materials (Cambridge University Press, Cambridge, 1990)CrossRefMATHGoogle Scholar
  35. Y.M. Li, B. Abbès, Y.Q. Guo, Two efficient algorithms of plastic integration for sheet forming modeling. ASME J. Manuf. Sci. Technol. 129, 698–704 (2007)CrossRefGoogle Scholar
  36. J.F. Mariage, K. Saanouni, P. Lestriez, A. Cherouat, Numerical simulation of ductile damage in metal forming processes: a simple predictive model. Part I. Theoretical and numerical aspects. Int. J. Form. Process 5(2–3–4), 363–376 (2002)CrossRefGoogle Scholar
  37. K. Mathur, P. Dawson, Damage evolution modeling in bulk forming processes, in Computational Methods for Predicting Material Processing Defects (Elsevier, Predeleanu, 1987)Google Scholar
  38. M.D. McKay, W.J. Conover, R.J. Beckman, A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21, 239–245 (1979)MATHMathSciNetGoogle Scholar
  39. F.J. Meng, C. Labergere, P. Lafon, Methodology of the shape optimization of forging dies. Int. J. Mater. Form 3(Suppl 1), 927–930 (2010)CrossRefGoogle Scholar
  40. F. Meng, Multi-objective optimization of several stages forging by using advanced numerical simulation and Meta-model, PhD thesis, Université de Technologie de Troyes. (2012)Google Scholar
  41. N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, Equation of state calculations by fast computing machines. J. Chem. Phys. 21, 1087–1092 (1953)CrossRefGoogle Scholar
  42. R. Myers, D. Montgomery, Response Surface Methodology: Process and Product Optimization Using Designed Experiments, 2nd edn. (Wiley, New York, 2002). ISBN 0-471-41255-4Google Scholar
  43. H. Naceur, Optimisation de forme de structures minces en grandes transformations, Edition EUE, ISBN-13: 978-613-1-54700-3, p. 240, (2010)Google Scholar
  44. H. Naceur, Y.Q. Guo, W. Gati, New enhancements in the inverse approach for the fast modeling of autobody stamping process. Int. J. Comput. Eng. Sci. 3(4), 355–384 (2002)CrossRefGoogle Scholar
  45. H. Naceur, Y.Q. Guo, J.L. Batoz, C. Knopf-Lenoir, Optimization of drawbead restraining forces and drawbead design in sheet metal forming process. Int. J. Mech. Sci. 43(10), 2407–2434 (2001)Google Scholar
  46. H. Naceur, Y.Q. Guo, S. Ben-Elechi, Response surface methodology for design of sheet forming parameters to control springback effects. Comput. Struct. 84, 1651–1663 (2006)CrossRefGoogle Scholar
  47. B. Nayrolles, G. Touzot, P. Villon, Generalizing the Finite Element Method: Diffuse approximation and diffuse elements. Comput. Mech. 10, 307–318 (1992)Google Scholar
  48. E. Onate, M. Kleiber, Plastic and viscoplastic flow of void containing metal – applications to axisymmetric sheet forming problem. Int. J. Numer. Meth. Eng. 25, 237–251 (1988)CrossRefGoogle Scholar
  49. P. Picart, O. Ghouati, J.C. Gelin, Optimization of metal forming process parameters with damage minimization. J. Mater. Process. Technol. 80–81, 597–601 (1998)CrossRefGoogle Scholar
  50. G. Rousselier, Ductile fracture models and their potential in local approach of fracture. Nucl. Eng. Des. 105(1), 97–111 (1987)CrossRefGoogle Scholar
  51. K. Saanouni, Damage Mechanics in Metal Forming. Advanced Modeling and Numerical Simulation (ISTE/Wiley, London, 2012). ISBN 978-1-8482-1348-7CrossRefGoogle Scholar
  52. K. Saanouni, J.L. Chaboche, Computational damage mechanics, application to metal forming, in Comprehensive Structural Integrity, Chapter 7, ed. by R. de Borst, H.A. Mang. Numerical and Computational Methods, vol. 3 (Elsevier, Amsterdam, 2003)Google Scholar
  53. K. Saanouni, K. Nesnas, Y. Hammi, Damage modeling in metal forming processes. Int. J. of Damage Mechanics. 9(3), 196–240 (2000)Google Scholar
  54. T. Santner, B. Williams, W. Notz, The Design and Analysis of Computer Experiments (Springer, New York, 2003)CrossRefMATHGoogle Scholar
  55. O. Schenk, M. Hillmann, Optimal design of metal forming die surfaces with evolution strategies. Comp. Struct. 82, 1695–1705 (2004)CrossRefGoogle Scholar
  56. H.B. Shim, K.C. Son, Optimal blank shape design by sensitivity method. J. Mater. Process. Technol. 104, 191–199 (2000)CrossRefGoogle Scholar
  57. J.C. Simo, R.L. Taylor, A return mapping algorithm for plane stress elastoplasticity. Int. J. Numer. Method Eng. 22, 649–670 (1986)CrossRefMATHMathSciNetGoogle Scholar
  58. D. Vieilledent, L. Fourment, Shape optimization of axisymmetric preform tools in forging using a direct differentiation method. Int. J. Numer. Method Eng. 52, 1301–1321 (2001)CrossRefMATHGoogle Scholar
  59. G. Zhao, E. Wright, R.V. Grandhi, Preform die shape design in metal forming using an optimization method. Int. J. Numer. Method Eng. 40(7), 1213–1230 (1997)CrossRefMATHGoogle Scholar
  60. G. Zhao, X. Ma, X. Zhao, R.V. Grandhi, Studies on optimization of metal forming processes using sensitivity analysis methods. J. Mater. Process. Technol. 147, 217–228 (2004)CrossRefGoogle Scholar
  61. Y.Y. Zhu, S. Cescotto, A.M. Habraken, A fully coupled elastoplastic damage modeling and fracture criteria in metal forming processes. J. Meter. Process. Technol. 32, 197–204 (1992)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Ying-Qiao Guo
    • 1
  • Yuming Li
    • 1
  • Boussad Abbès
    • 1
  • Hakim Naceur
    • 2
  • Ali Halouani
    • 1
  1. 1.Université de Reims Champagne-Ardenne, GRESPI/MPSE, Faculté des Sciences Exactes et NaturellesReims Cedex 2France
  2. 2.Université Lille Nord de France, Laboratoire LAMIH UMR 8201 CNRSValenciennes Cedex 9France

Personalised recommendations