Skip to main content

Two-Dimensional Discrete Damage Models: Discrete Element Methods, Particle Models, and Fractal Theories

  • Living reference work entry
  • First Online:
Book cover Handbook of Damage Mechanics

Abstract

Discrete element methods (DEM) reviewed in this essay are limited to discontinuous models comprised of two-dimensional (2D) basic constitutive units such as circles, ellipses, or polygons given geometrical, structural, and contact properties that allow their assemblies to approximate phenomenological response of abstracted materials. The contacts are endowed with energy dissipation mechanisms and cohesive strength, which enables representation of damage-evolution phenomena such as crack nucleation and growth. By the way of dynamic interactions among particles, DEM are capable of coping with the complexity of fracture events in a simple and natural manner. On the other hand, the particle models are, in principle, offshoots of molecular dynamics (MD) adapted to simulation of materials at coarser scales. The role of atom is taken over by a continuum particle or quasi-particle, a basic constitutive unit that can represent, for example, a grain of ceramics, a concrete aggregate, and a particle of a composite. The computation domain is discretized into regular or random network of such particles generally interacting through nonlinear potentials within the realm of Newtonian dynamics. The model parameters should be identifiable with the macroscopic elastic, inelastic, and fracture properties of the material they aspire to represent, and the model should be structured in accordance with its morphology. Finally, a succinct survey of the percolation theory and fractal scaling laws of damage in discrete models is offered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • M.J. Alava, P.K.V.V. Nukala, S. Zapperi, Statistical models of fracture. Adv. Phys. 55(3–4), 349–476 (2006)

    Article  Google Scholar 

  • M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids (Oxford University Press, New York, 1987)

    MATH  Google Scholar 

  • F. Alonso-Marroquín, H.J. Herrmann, The incremental response of soils. An investigation using a discrete-element model. J. Eng. Math. 52, 11–34 (2005)

    Article  MATH  Google Scholar 

  • A.S. Balankin, A. Bravo-Ortega, M.A. Galicia-Cortes, O. Susarey, The effect of self-affine roughness on crack mechanics in elastic solids. Int. J. Fract. 79(4), R63–R68 (1996)

    Article  Google Scholar 

  • A.L. Barabasi, H.E. Stanley, Fractal Concepts in Surface Growth (Cambridge University Press, Cambridge, 1995)

    Book  MATH  Google Scholar 

  • N. Bicanic, Discrete Element Methods, in Encyclopedia of Computational Mechanics: Fundamentals, ed. by E. Stein, R. De Borst, T. Hughes (Wiley, New York, 2004), pp. 311–337

    Google Scholar 

  • F.M. Borodich, Some fractal models of fracture. J. Mech. Phys. Solids. 45(2), 239–259 (1997)

    Article  MATH  Google Scholar 

  • M.J. Buehler, F.F. Abraham, H. Gao, Hyperelasticity governs dynamic fracture at a critical length scale. Nature 426, 141–146 (2003)

    Article  Google Scholar 

  • T.L. Chelidze, Percolation and fracture, physics of the earth. Planet. Inter. 28, 93 (1982)

    Article  Google Scholar 

  • Y.P. Cheng, Y. Nakata, M.D. Bolton, Discrete element simulation of crushable soil. Geotechnique 53(7), 633–641 (2003)

    Article  Google Scholar 

  • G.P. Cherepanov, A.S. Balankin, V.S. Ivanova, Fractal fracture mechanics. Eng. Fract. Mech. 51(6), 997–1033 (1995)

    Article  Google Scholar 

  • K. Christensen, Percolation Theory (ebook) (MIT, Cambridge, 2002)

    Google Scholar 

  • P.A. Cundall, A computer model for simulating progressive large scale movements in blocky rock systems, in Proceedings of the Symposium of International Society of Rock Mechanics, vol. 1, Paper No II-8. Nancy, France, 1971

    Google Scholar 

  • P.A. Cundall, UDEC – A Generalized Distinct Element Program for Modelling Jointed Rock. Report PCAR-1-80, Peter Cundall Associates, European Research Office, US Army Corps of Engineers, 1980

    Google Scholar 

  • P.A. Cundall, Formulation of a three-dimensional distinct element model – part I: a scheme to detect and represent contacts in a system composed of many polyhedral blocks. Int. J. Rock. Mech. Min. Sci. Geomech. Abstr. 25(3), 107–116 (1988)

    Article  Google Scholar 

  • P.A. Cundall, R. Hart, Numerical modeling of discontinua. J. Eng. Comp. 9, 101–113 (1992)

    Article  Google Scholar 

  • P.A. Cundall, O.D.L. Strack, A discrete numerical model for granular assemblies. Geotechnique 29(1), 47–65 (1979)

    Article  Google Scholar 

  • G.A. D’Addetta, F. Kun, E. Ramm, H.J. Herrmann, in From Solids to Granulates - Discrete Element Simulations of Fracture and Fragmentation Processes in Geomaterials, In: Continuous and Discontinuous Modelling of Cohesive-Frictional Materials, Lecture Notes in Physics, 568, ed. by P.A. Vermeer et al. (eds.) (Springer, Berlin Heidelberg, 2001), pp. 231–258

    Google Scholar 

  • G.A. D’Addetta, F. Kun, E. Ramm, On the application of a discrete model to the fracture process of cohesive granular materials. Granul. Matter 4, 77–90 (2002)

    Article  MATH  Google Scholar 

  • L. De Arcangelis, S. Redner, H.J. Hermann, A random fuse model for breaking processes. J. Phys. Lett. 46, 585–590 (1985)

    Article  Google Scholar 

  • F.V. Donze, V. Richefeu, S.-A. Magnier, Advances in discrete element method applied to soil, rock and concrete mechanics. Electr. J. Geotech. Eng. 08, 1–44 (2008)

    Google Scholar 

  • P.M. Duxbury, P.D. Beale, P.L. Leath, Size effects of electrical breakdown in quenched random media. Phys. Rev. Lett. 57(8), 1052–1055 (1986)

    Article  Google Scholar 

  • F. Family, T. Vicsek, Dynamics of Fractal Surfaces (World Scientific, Singapore, 1991)

    MATH  Google Scholar 

  • S. Feng, M.F. Thorpe, E. Garboczi, Effective-medium theory of percolation on central-force elastic networks. Phys. Rev. B. 31(1), 276–280 (1985)

    Article  Google Scholar 

  • R. Garcia-Molina, F. Guinea, E. Louis, Percolation in isotropic elastic media. Phys. Rev. Lett. 60, 124–127 (1988)

    Article  Google Scholar 

  • D. Greenspan, Particle Modeling (Birkhäuser Publishing, Boston, 1997)

    Book  MATH  Google Scholar 

  • E. Guyon, S. Roux, A. Hansen, D. Bideaull, J.P. Troadec, H. Crapon, Non-local and non-linear problems in the mechanics of disordered systems: application to granular media and rigidity problems. Rep. Prog. Phys. 53, 373–419 (1990)

    Article  Google Scholar 

  • A. Hansen, S. Roux, Statistics Toolbox for Damage and Fracture, in Damage and Fracture of Disordered Materials, ed. by D. Krajcinovic, J.G.M. Van Mier (Springer, Berlin/Heidelberg/New York, 2000)

    Google Scholar 

  • A. Hansen, S. Roux, H.J. Herrmann, Rupture of central-force lattices. J. Phys. France 50, 733–744 (1989)

    Article  Google Scholar 

  • H.J. Herrmann, A. Hansen, S. Roux, Fracture of disordered, elastic lattices in two dimensions. Phys. Rev. B. 39(1), 637–648 (1989)

    Article  Google Scholar 

  • R. Ince, A. Arslan, B.L. Karihaloo, Lattice modeling of size effect in concrete strength. Eng. Fract. Mech. 70(16), 2307–2320 (2003)

    Article  Google Scholar 

  • R.P. Jensen, P.J. Bosscher, M.E. Plesha, T.B. Edil, DEM simulation of granular media – structure interface: effects of surface roughness and particle shape. Int. J. Numer. Anal. Method Geomech. 23, 531–547 (1999)

    Article  MATH  Google Scholar 

  • R.P. Jensen, M.E. Plesha, T.B. Edil, P.J. Bosscher, N.B. Kahla, DEM simulation of particle damage in granular media – structure interfaces. Int. J. Geomech. 1(1), 21–39 (2001)

    Article  Google Scholar 

  • L. Jing, A review of techniques, advances and outstanding issues in numerical modelling for rock mechanics and rock engineering. Int. J. Rock Mech. Min. Sci. 40, 283–353 (2003)

    Article  Google Scholar 

  • H. Kim, W.G. Buttlar, Discrete fracture modeling of asphalt concrete. Int. J. Solids Struct. 46, 2593–2604 (2009)

    Article  MATH  Google Scholar 

  • D. Krajcinovic, Damage Mechanics (Elsevier, Amsterdam, 1996)

    Google Scholar 

  • D. Krajcinovic, M. Basista, Rupture of central-force lattices. J. Phys. France 50, 733–744 (1989)

    Article  Google Scholar 

  • D. Krajcinovic, A. Rinaldi, Thermodynamics and statistical physics of damage processes in quasi-ductile solids. Mech. Mater. 37, 299–315 (2005a)

    Article  Google Scholar 

  • D. Krajcinovic, A. Rinaldi, Statistical damage mechanics – 1. Theory. J. Appl. Mech. 72, 76–85 (2005b)

    MATH  Google Scholar 

  • D. Krajcinovic, M. Vujosevic, Strain localization – short to long correlation length transition. Int. J. Solids. Struct. 35(31–32), 4147–4166 (1998)

    Article  MATH  Google Scholar 

  • N.P. Kruyt, L. Rothenburg, A micro-mechanical definition of the strain tensor for two dimensional assemblies of particles. J. Appl. Mech. 63, 706–711 (1996)

    Article  MATH  Google Scholar 

  • N.P. Kruyt, L. Rothenburg, Statistical theories for the elastic moduli of two-dimensional assemblies of granular materials. Int. J. Eng. Sci. 36, 1127–1142 (1998)

    Article  Google Scholar 

  • F. Kun, H. Herrmann, A study of fragmentation processes using a discrete element method. Comput. Methods. Appl. Mech. Eng. 138, 3–18 (1996)

    Article  MATH  Google Scholar 

  • F. Kun, G.A. D’Addetta, H. Herrmann, E. Ramm, Two-dimensional dynamic simulation of fracture and fragmentation of solids. Comput. Assist. Mech. Eng. Sci. 6, 385–402 (1999)

    MATH  Google Scholar 

  • S. Mastilovic, Some observations regarding stochasticity of dynamic response of 2D disordered brittle lattices. Int. J. Damage Mech. 20, 267–277 (2011)

    Article  Google Scholar 

  • S. Mastilovic, On strain-rate sensitivity and size effect of brittle solids: transition from cooperative phenomena to microcrack nucleation. Contin. Mech. Thermodyn. 25, 489–501 (2013)

    Article  Google Scholar 

  • S. Mastilovic, K. Krajcinovic, High-velocity expansion of a cavity within a brittle material. J. Mech. Phys. Solids. 47, 577–610 (1999a)

    Article  MATH  Google Scholar 

  • S. Mastilovic, D. Krajcinovic, Penetration of rigid projectiles through quasi-brittle material. J. Appl. Mech. 66, 585–592 (1999b)

    Article  Google Scholar 

  • S. Mastilovic, A. Rinaldi, D. Krajcinovic, Ordering effect of kinetic energy on dynamic deformation of brittle solids. Mech. Mater. 40(4–5), 407–417 (2008)

    Article  Google Scholar 

  • M.J. Meisner, G.N. Frantziskonis, Multifractal fracture-toughness properties of brittle heterogeneous materials. J. Phys. B. 29(11), 2657–2670 (1996)

    MATH  Google Scholar 

  • L.L. Mishnaevsky Jr., Determination for the time-to-fracture of solids. Int. J. Fract. 79(4), 341–350 (1996)

    Article  Google Scholar 

  • L.L. Mishnaevsky Jr., Damage and Fracture of Heterogeneous Materials (AA Balkema, Rotterdam, 1998)

    Google Scholar 

  • A.A. Munjiza, E.E. Knight, E. Rougier, Computational Mechanics of Discontinua (Wiley, New York, 2011)

    Book  Google Scholar 

  • P.K.V.V. Nukala, S. Simunovic, R.T. Mills, Statistical physics of fracture: scientific discovery through high-performance computing. J. Phys. 46, 278–291 (2006)

    Google Scholar 

  • M. Ostoja-Starzewski, Damage in Random Microstructure: Size Effects, Fractals and Entropy Maximization, in Mechanics Pan-America 1989, ed. by C.R. Steele et al. (ASME Press, New York, 1989), pp. 202–213

    Google Scholar 

  • M. Ostoja-Starzewski, Microstructural Randomness and Scaling in Mechanics of Materials (Taylor & Francis Group, Boca Raton, 2007)

    Book  Google Scholar 

  • M. Ostoja-Starzewski, J. Li, H. Joumaa, P.N. Demmie, From fractal media to continuum mechanics. Zeit. Angew. Math. Mech. (ZAMM) 93, 1–29 (2013)

    Article  Google Scholar 

  • M.E. Plesha, E.C. Aifantis, On the modeling of rocks with microstructure, in Proceedings of 24th US Symposium on Rock Mechanics, Texas A&M University, College Station, Texas, 1983, pp. 27–39

    Google Scholar 

  • D.O. Potyondy, P.A. Cundall, A bonded-particle model for rock. Int. J. Rock. Mech. Min. Sci. 41, 1329–1364 (2004)

    Article  Google Scholar 

  • N.M. Pugno, R.S. Ruoff, Quantized fracture mechanics. Philos. Mag. 84, 2829 (2004)

    Article  Google Scholar 

  • A. Rinaldi, A rational model for 2D disordered lattices under uniaxial loading. Int. J. Damage. Mech. 18, 233–257 (2009)

    Article  Google Scholar 

  • A. Rinaldi, Advances in Statistical Damage Mechanics: New Modelling Strategies, in Damage Mechanics and Micromechanics of Localized Fracture Phenomena in Inelastic Solids, ed. by G. Voyiadjis. CISM Course Series, vol. 525 (Springer, Berlin/Heidelberg/New York, 2011)

    Chapter  Google Scholar 

  • A. Rinaldi, S. Mastilovic, D. Krajcinovic, Statistical damage mechanics – 2. Constitutive relations. J. Theor. Appl. Mech. 44(3), 585–602 (2006)

    Google Scholar 

  • A. Rinaldi, D. Krajcinovic, S. Mastilovic, Statistical damage mechanics and extreme value theory. Int. J. Damage. Mech. 16(1), 57–76 (2007)

    Article  Google Scholar 

  • S. Roux, E. Guyon, Mechanical percolation: a small beam lattice study. J. Phys. Lett. 46, L999–L1004 (1985)

    Article  Google Scholar 

  • S. Van Baars, Discrete element modelling of granular materials. Heron 41(2), 139–157 (1996)

    Google Scholar 

  • P.N. Sen, S. Feng, B.I. Halperin, M.F. Thorpe, Elastic Properties of Depleted Networks and Continua, in Physics of Finely Divided Matter, ed. by N. Boccara, M. Daoud (Springer, Berlin/Heidelberg/New York, 1985), pp. 171–179

    Chapter  Google Scholar 

  • D. Stauffer, A. Aharony, Introduction to Percolation Theory (Taylor & Francis, London, 1994)

    Google Scholar 

  • V.E. Tarasov, Review of some promising fractional physical models. Int. J. Modern. Phys. 27(9), 1330005 (2013)

    Article  MathSciNet  Google Scholar 

  • J.M. Ting, A robust algorithm for ellipse-based discrete element modelling of granular materials. Comput. Geotech. 13(3), 175–186 (1992)

    Article  Google Scholar 

  • V. Topin, J.-Y. Delenne, F. Radjaï, L. Brendel, F. Mabille, Strength and failure of cemented granular matter. Eur. Phys. J. E. 23, 413–429 (2007)

    Article  Google Scholar 

  • V. Vitek, Pair Potentials in Atomistic Computer Simulations, in Interatomic Potentials for Atomistic Simulations, ed. by A.F. Voter. MRS Bulletin, vol. 21, 1996, pp. 20–23

    Google Scholar 

  • G. Wang, M. Ostoja-Starzewski, Particle modeling of dynamic fragmentation-I: theoretical considerations. Comput. Mater. Sci. 33, 429–442 (2005)

    Article  Google Scholar 

  • G. Wang, A.H.-D. Cheng, M. Ostoja-Starzewski, A. Al-Ostaz, P. Radziszewski, Hybrid lattice particle modelling approach for polymeric materials subject to high strain rate loads. Polymers 2, 3–30 (2010)

    Article  Google Scholar 

  • M. Wnuk, A. Yavari, Discrete fractal fracture mechanics. Eng. Fract. Mech. 75, 1127–1142 (2008)

    Article  Google Scholar 

  • J. Xiang, A. Munjiza, J.-P. Latham, R. Guises, On the validation of DEM and FEM/DEM models in 2D and 3D. Eng. Comput. 26(6), 673–687 (2009)

    Article  Google Scholar 

  • S.C. Yang, S.S. Hsiau, The simulation of powders with liquid bridges in a 2D vibrated bed. Chem. Eng. Sci. 56, 6837–6849 (2001)

    Article  Google Scholar 

  • R. Zhang, J. Li, Simulation on mechanical behavior of cohesive soil by distinct element method. J. Terramech. 43, 303–316 (2006)

    Article  Google Scholar 

  • A. Zubelewicz, Z. Mroz, Numerical simulation of rockburst processes treated as problems of dynamic instability. Rock. Mech. Eng. 16, 253–274 (1983)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sreten Mastilovic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

Mastilovic, S., Rinaldi, A. (2013). Two-Dimensional Discrete Damage Models: Discrete Element Methods, Particle Models, and Fractal Theories. In: Voyiadjis, G. (eds) Handbook of Damage Mechanics. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8968-9_23-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8968-9_23-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-8968-9

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics