Modeling Deformation and Damage of Random Fiber Network (RFN) Materials

  • Rickard Hägglund
  • Per Isaksson
Living reference work entry


Fiber materials are used in a wide range of products. Fibers can be directly bonded to each other to form 2D and 3D network materials, commonly referred to as random fiber network (RFN) materials. Examples of such materials are paper, textiles, or nonwoven felts. An RFN represents a random structure on the microscale, which governs a complex deformation and fracture behavior. This is due to a size effect in the mechanical behavior of the network because of its heterogeneous nature: the fibers introduce long-range microstructural effects in the material that distribute forces and deformation in a complex manner that is very different compared to more continuous materials. A fiber network material used in a product must meet performance requirements through the entire use cycle including manufacturing and end-use situations. This chapter presents a framework for analyzing deformation, damage, and fracture in network materials using continuum damage mechanics. Material degradation, or damage, is described in a diffuse sense and the influence of damage on the mechanical properties is governed by an internal length variable. To correctly describe gradients in strain and damage, a nonlocal field theory (gradient theory) must be added to the framework. A mathematical framework for such theory is presented.


Acoustic Emission Machine Direction Continuum Damage Mechanic Cross Direction Paper Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. E.C. Aifantis, A note on gradient elasticity and nonsingular crack fields. J. Mech. Behav. Mater. 20, 103–105 (2011)CrossRefGoogle Scholar
  2. S. Allaoui, Z. Aboura, M.L. Benzeggagh, Phenomena governing uni-axial tensile behaviour of paperboard and corrugated cardboard. Comp. Struct. 87, 80–92 (2008)CrossRefGoogle Scholar
  3. B.S. Altan, E.C. Aifantis, On some aspects in the special theory of gradient elasticity. J. Mech. Behav. Mater. 8(3), 231–282 (1997)CrossRefGoogle Scholar
  4. P.E. Åslund, P. Isaksson, A note on the nonlinear mechanical behavior of planar random network structures subjected to in-plane compression. Comp. Mater. 45, 2697–2703 (2011)CrossRefGoogle Scholar
  5. J. Åström, K. Niskanen, Simulation of network fracture, in Proceedings of the 1991 International Paper Physics Conference (TAPPI, Espoo Finland, 1991), pp. 31–47Google Scholar
  6. J. Åström, K. Niskanen, Symmetry-breaking fracture in random fiber networks. Europhys. Lett. 21, 557–562 (1993)CrossRefGoogle Scholar
  7. G.A. Baum, D.C. Brennan, C.C. Habeger, Orthotropic elastic constants of paper. Tappi 64, 97–101 (1981)Google Scholar
  8. C.A. Bronkhorst, Modeling paper as a two-dimensional elastic–plastic stochastic network. Int. J. Solids Struct. 40(20), 5441–5454 (2003)MATHCrossRefGoogle Scholar
  9. D.W. Coffin, Use of the efficiency factor to account for previous straining on the tensile behavior of paper. Nord. Pulp Pap. Res. J. 27(2), 305–312 (2012)CrossRefGoogle Scholar
  10. D. W. Coffin, K. Li, On the fracture behavior of paper, in Proceedings: Progress in Paper Physics, 5–8 Sept, Graz, 2011Google Scholar
  11. H.L. Cox, The elasticity and strength of paper and other fibrous materials. Br. J. Appl. Phys. 3, 72–79 (1952)CrossRefGoogle Scholar
  12. A. Delaplace, G. Pijaudier-Cabot, S. Roux, Progressive damage in discrete models and consequences on continuum modelling. J. Mech. Phys. Solids 44(1), 99–136 (1996)MATHMathSciNetCrossRefGoogle Scholar
  13. S.J. Eichhorn, A. Dufresne, M. Aranguren, N.E. Marcovich, J.R. Capadona, S.J. Rowan, C. Weder, W. Thielemans, M. Roman, S. Renneckar, W. Gindl, S. Veigel, J. Keckes, H. Yano, K. Abe, M. Nogi, A.N. Nakagaito, A. Mangalam, J. Simonsen, A.S. Benight, A. Bismarck, L.A. Berglund, T. Peijs, Review: current international research into cellulose nanofibres and nanocomposites. J. Mater. Sci. 45, 1–33 (2010)CrossRefGoogle Scholar
  14. A.C. Eringen, Nonlocal Continuum Field Theories (Springer, New York, 2002)MATHGoogle Scholar
  15. A.C. Eringen, D.G.B. Edelen, On nonlocal elasticity. Int. J. Eng. Sci. 10, 233–248 (1972)MATHMathSciNetCrossRefGoogle Scholar
  16. C. Fellers, A. de Ruvo, J. Elfström, M. Htun, Edgewise compression properties. A comparison of handsheets made from pulps of various yields. Tappi J. 63(6), 109–112 (1980)Google Scholar
  17. R. Hägglund, P. Isaksson, Analysis of localized failure in low-basis weight paper. Int. J. Solids Struct. 43, 5581–5592 (2006)MATHCrossRefGoogle Scholar
  18. R. Hägglund, P. Isaksson, On the coupling between macroscopic material degradation and interfiber bond fracture in an idealized fiber network. Int. J. Solids Struct. 45, 868–878 (2007)CrossRefGoogle Scholar
  19. M. Henriksson, L.A. Berglund, P. Isaksson, T. Lindström, T. Nishino, Cellulose nanopaper structures of high toughness. Biomacromolecules 9(6), 1579–1585 (2008)CrossRefGoogle Scholar
  20. H.J. Herrmann, S. Roux (eds.), Statistical Models for the Fracture of Disordered Media (North Holland, Amsterdam, 1990)Google Scholar
  21. S. Heyden, Network modelling for the evaluation of mechanical properties of cellulose fiber fluff. Ph.D.-thesis, Lund University, Sweden, 2000Google Scholar
  22. S. Heyden, P.J. Gustafsson, Simulation of fracture in a cellulose fiber network. J. Pulp Pap. Sci. 24, 160–165 (1998)Google Scholar
  23. P. Isaksson, R. Hägglund, Structural effects on deformation and fracture of random fiber networks and consequences on continuum models. Int. J. Solids Struct. 46, 2320–2329 (2009)MATHCrossRefGoogle Scholar
  24. P. Isaksson, R. Hägglund, Crack-tip fields in gradient enhanced elasticity. Eng. Fract. Mech. 97, 186–192 (2013)CrossRefGoogle Scholar
  25. P. Isaksson, R. Hägglund, P. Gradin, Continuum damage mechanics applied to paper. Int. J. Solids Struct. 41, 4731–4755 (2004)MATHCrossRefGoogle Scholar
  26. A. Jangmalm, S. Östlund, Modelling of curled fibres in two-dimensional networks. Nord. Pulp Pap. Res. J. 10, 156–161 (1995)CrossRefGoogle Scholar
  27. C.A. Jentzen, The effect of stress applied during drying on some of the properties of individual pulp fibers. Tappi 47(7), 412–418 (1964)Google Scholar
  28. L.M. Kachanov, Time of the rupture process under creep condition. Izv. Akad. Nauk SSSR, Otd. Tekhn. Nauk, 26–31, 1958 (in Russian)Google Scholar
  29. O. Kallmes, H. Corte, The structure of paper. I. The statistical geometry of an ideal two-dimensional fibre network. Tappi 43(9), 737–752 (1960)Google Scholar
  30. M.J. Korteoja, A. Lukkarinen, K. Kaski, D.J. Gunderson, J.L. Dahlke, K.J. Niskanen, Local strain fields in paper. Tappi J. 79(4), 217–223 (1996)Google Scholar
  31. E. Kröner, Elasticity theory of materials with long range cohesive forces. Int. J. Solids Struct. 3, 731–742 (1967)MATHCrossRefGoogle Scholar
  32. J. Lemaitre, J.L. Chaboche, Mechanics of Solid Materials (Cambridge University Press, Cambridge, UK, 1990)MATHCrossRefGoogle Scholar
  33. P. Luner, A.E.U. Karna, C.P. Donofrio, Studies in interfibre bonding of paper. The use of optical bonded area with high yield pulps. Tappi J. 44(6), 409–414 (1961)Google Scholar
  34. K.J. Niskanen, Strength and fracture of paper (KCL Paper Science Centre, Espoo, 1993)Google Scholar
  35. K. Niskanen, H. Kettunen, Y. Yu, Damage width: a measure of the size of fracture process zone. In: 12th Fundamental Research Symposium, Oxford, UK, 2001Google Scholar
  36. R.H.J. Peerlings, R. de Borst, W.A.M. Brekelmans, J.H.P. de Vree, Gradient enhanced damage for quasi-brittle materials. Int. J. Numer. Met. Eng. 39, 3391–3403 (1996)MATHCrossRefGoogle Scholar
  37. R.H.J. Peerlings, M.G.D. Geers, R. de Borst, W.A.M. Brekelmans, A critical comparison of nonlocal and gradient-enhanced softening continua. Int. J. Solids Struct. 38(44–45), 7723–7746 (2001)MATHCrossRefGoogle Scholar
  38. G. Pijaudier-Cabot, Z.P. Bazant, Nonlocal damage theory. J. Eng. Mech. 113, 1512–1533 (1987)CrossRefGoogle Scholar
  39. M.K. Ramasubramanian, R.W. Perkins, Computer simulation of the uniaxial elastic–plastic behavior of paper. ASME J. Eng. Mater. Tech. 110(2), 117–123 (1987)CrossRefGoogle Scholar
  40. A. Ridruejo, C. González, J. LLorca, Damage micromechanisms and notch sensitivity of glass-fiber non-woven felts: an experimental and numerical study. J. Mech. Phys. Solids 58, 1628–1645 (2010)CrossRefGoogle Scholar
  41. I.B. Sachs, T.A. Kuster, Edgewise compression failure mechanism of linerboard observed in a dynamic mode. Tappi J. 63, 69 (1980)Google Scholar
  42. L.I. Salminen, A.I. Tolvanen, M.J. Alava, Acoustic emission from paper fracture. Phys. Rev. Lett. 89, 185503 (2003)CrossRefGoogle Scholar
  43. S.A. Silling, Reformulation of elasticity theory for discontinuities and long-range forces. J. Mech. Phys. Solids 48, 175–209 (2000)MATHMathSciNetCrossRefGoogle Scholar
  44. J.A. Van den Akker, Some theoretical considerations on the mechanical properties of fibrous structures, in The Formation and Structure of Paper, ed. by F. Bolam. Technical Section British Paper and Board Makers Association, London (1962), pp. 205–241Google Scholar
  45. T. Yamauchi, Effect of notches on micro failures during tensile straining of paper. Jpn. Tappi J. 58(11), 105–112 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.SCA R&D CENTRE ABSCA GroupSundsvallSweden
  2. 2.Department of Engineering Sciences, Division of Applied MechanicsUppsala UniversitetUppsalaSweden

Personalised recommendations