Skip to main content

Experimental Methods to Quantify Microdamage and Microstructure Anomalies in Fiber-Reinforced Polymer Composites: Overview

  • Living reference work entry
  • First Online:
Handbook of Damage Mechanics

Abstract

Composite structures are known to be susceptible to both manufacturing defects and in-service damage. Defects or damage can result in serviceability issues or a loss in the structural capability. Detection and characterization of defect and damage is thus of paramount importance in any successful deployment of fiber-reinforced polymer composites, particularly as they are used as primary load-carrying structures. Experimental methods for investigation of microdamage or anomalies in composites present the challenge that one single method is not capable of identifying all damage mechanisms. This chapter presents a review of selected experimental methods aimed at providing a quantitative description of selected damage types of microscale dimensions (e.g., intra-ply cracks) and microstructure anomalies (waviness, porosity) in fiber-reinforced polymer composites. The chapter discusses in the first part microscale damage characterization using microscopy, radiography acoustics, and ultrasonic techniques, while the second part is focused on the characterization of microstructural anomalies that depend on manufacturing, namely, waviness and porosity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • E. Adolfsson, P. Gudmundson, Matrix crack initiation and progression in composite laminates subjected to bending and extension. Int. J. Solids Struct. 36, 3131–3169 (1999)

    Article  MATH  Google Scholar 

  • D.G. Aggelis, N.-M. Barkoula, T.E. Matikas, A.S. Paipetis, Acoustic structural health monitoring of composite materials: damage identification and evaluation in cross ply laminates using acoustic emission and ultrasonics. Compos. Sci. Technol. 72, 1127–1133 (2012)

    Article  Google Scholar 

  • J. Andersons, R. Joffe, E. Spārniņš, Statistical model of the transverse ply cracking in cross-ply laminates by strength and fracture toughness based failure criteria. Eng. Fract. Mech. 75, 2651–2665 (2008)

    Article  Google Scholar 

  • ASTM D2734 – 09, Standard Test Methods for Void Content of Reinforced Plastics: ASTM D2734 – 09 Standard Test Methods for Void Content of Reinforced Plastics (ASTM International, West Conshohocken, 2009)

    Google Scholar 

  • J. Aveston, A. Kelly, Theory of multiple fracture of fibrous composites. J. Mater. Sci. 8, 352–362 (1973)

    Article  Google Scholar 

  • E.J. Barbero, F.A. Cosso, F.A. Campo, Benchmark solution for degradation of elastic properties due to transverse cracking in laminated composites. Compos. Struct. 98, 242–252 (2013)

    Article  Google Scholar 

  • Y. Bar-Cohen, Emerging NDE technologies and challenges at the beginning of the 3rd millennium, Part II, NDT.net. 5 (2000). Available on http://www.ndt.net/article/v05n02/barcohen/barcohen.htm. Downloaded Oct 2013

  • J.-M. Berthelot, Transverse cracking and delamination in cross-ply glass-fiber and carbon-fiber reinforced plastic laminates: static and fatigue loading. ASME Appl. Mech. Rev. 56, 111–147 (2003)

    Article  Google Scholar 

  • R. Böhm, W. Hufenbach, Experimentally based strategy for damage analysis of textile-reinforced composites under static loading. Compos. Sci. Technol. 70, 1330–1337 (2010)

    Article  Google Scholar 

  • D.J. Bull, L. Helfen, I. Sinclair, S.M. Spearing, T. Baumbach, A comparison of multi-scale 3D X-ray tomographic inspection techniques for assessing carbon fibre composite impact damage. Compos. Sci. Technol. 75, 55–61 (2013)

    Article  Google Scholar 

  • V.N. Bulsara, R. Talreja, J. Qu, Damage initiation under transverse loading of unidirectional composites with arbitrarily distributed fibers. Compos. Sci. Technol. 59, 673–682 (1999)

    Article  Google Scholar 

  • M. Castaings, B. Hosten, T. Kundu, Inversion of ultrasonic, plane-wave transmission data in composite plates to infer viscoelastic material properties. NDT&E Int. 33, 377–392 (2000)

    Article  Google Scholar 

  • S. K. Chakrapani, V. Dayal, D.J. Barnard, A. Eldal, R. Krafka, Ultrasonic Rayleigh wave inspection of waviness in wind turbine blades: experimental and finite element method, in Review of Progress in Quantitative Nondestructive Evaluation, Burlington, July 2011. AIP Conf. Proc. 1430, 1911–1917 (2012), http://proceedings.aip.org/resource/2/apcpcs/1430/1/1911_1. Accessed 23 Feb 2013

  • H.-J. Chun, J.-Y. Shin, I.M. Daniel, Effects of material and geometric nonlinearities on the tensile and compressive behavior of composite materials with fiber waviness. Compos. Sci. Technol. 61(1), 125–134 (2001)

    Article  Google Scholar 

  • M.V. Cid Alfaro, A.S.J. Suiker, R. De Borst, Transverse failure behavior of fiber-epoxy systems. J. Compos. Mater. 44, 1493–1516 (2010)

    Article  Google Scholar 

  • F.W. Crossman, W.J. Warren, A.S.D. Wang, G.E. Law Jr., Initiation and growth of transverse cracks and edge delamination in composite laminates Part 2. Experimental correlation. J. Compos. Mater. 14, 88–108 (1980)

    Article  Google Scholar 

  • I.M. Daniel, S.C. Wooh, I. Komsky, Quantitative porosity characterization of composite materials by means of ultrasonic attenuation measurement. J. Nondestruct. Eval. 11(1), 1–8 (1992)

    Article  Google Scholar 

  • V. Dayal, Wave propagation in a composite with a wavy sublamina. J. Nondestruct. Eval. 14(1), 1–7 (1995). doi:10.1007/bf00735666

    Article  MathSciNet  Google Scholar 

  • S.F. de Andrade Silva, J.W. Williams, B.R. Müller, M.P. Hentschel, P.D. Portella, N. Chawla, Three-dimensional microstructure visualization of porosity and Fe-rich inclusions in SiC particle-reinforced Al Ally matrix composites by X-ray synchrotron tomography. Metall. Mater. Trans. A 41(8), 2121–2128 (2010)

    Article  Google Scholar 

  • K. Diamanti, C. Soutis, Structural health monitoring techniques for aircraft composite structures. Prog. Aerosp. Sci. 46, 342–352 (2010)

    Article  Google Scholar 

  • R. F. Elhajjar, M. T. Lo Ricco, A modified average stress criterion for open-hole tension strength in the presence of localized wrinkling. Plast. Rubbers Compos. 41(9), 396–406 (2012)

    Google Scholar 

  • R.F. Elhajjar, D.R. Petersen, Gaussian function characterization of unnotched tension behavior in a carbon/epoxy composite containing localized fiber waviness. Compos. Struct. 93(9), 2400–2408 (2011). doi:10.1016/J.Compstruct.2011.03.029

    Article  Google Scholar 

  • L. Farge, J. Varna, Z. Ayadi, Use of full-field measurements to evaluate analytical models for laminates with intralaminar cracks. J. Compos. Mater. 46, 2739–2752 (2012)

    Article  Google Scholar 

  • J.P. Favre, J.C. Laizet, Amplitude and counts per event analysis of the acoustic emission generated by the transverse cracking of cross-ply CFRP. Compos. Sci. Technol. 36, 27–43 (1989)

    Article  Google Scholar 

  • R. Gauvin, M. Chibani, P. Lafontaine, The modeling of pressure distribution in resin transfer molding. J. Reinf. Plast. Compos. 6(4), 367–377 (1987)

    Article  Google Scholar 

  • F. Ghezzo, D.R. Smith, T.N. Starr, T. Perram, A.F. Starr, T.K. Darlington, R.K. Baldwin, S.J. Oldenburg, Development and characterization of healable carbon fiber composites with a reversibly cross linked polymer. J. Compos. Mater. 44(13), 1587–1603 (2010)

    Article  Google Scholar 

  • G. Gupta, A. Zbib, A. El-Ghannam, M. Khraisheh, H. Zbib, Characterization of a novel bioactive composite using advanced X-ray computed tomography. Compos. Struct. 71(3), 423–428 (2005)

    Article  Google Scholar 

  • A.L. Highsmith, K.L. Reifsnider, Stiffness reduction mechanisms in composite laminates, in Damage in Composite Materials, ed. by K.L. Reifsnider (ASTM STP 775, Philadelphia, 1982), pp. 103–117

    Google Scholar 

  • H.M. Hsiao, I.M. Daniel, Effect of fiber waviness on stiffness and strength reduction of unidirectional composites under compressive loading. Compos. Sci. Technol. 56(5), 581–593 (1996a)

    Article  Google Scholar 

  • H.M. Hsiao, I.M. Daniel, Nonlinear elastic behavior of unidirectional composites with fiber waviness under compressive loading. J. Eng. Mater. T ASME 118(4), 561–570 (1996b)

    Article  Google Scholar 

  • H.M. Hsiao, I.M. Daniel, Elastic properties of composites with fiber waviness. Compos. Part A Appl. S 27(10), 931–941 (1996c)

    Article  Google Scholar 

  • K. Jemielniak, Some aspects of acoustic emission signal pre-processing. J. Mater. Process Technol. 109(3), 242–247 (2001)

    Article  Google Scholar 

  • N.C.W. Judd, W.W. Wright, Voids and their effects on the mechanical properties of composites-an appraisal. SAMPE J. 14(1), 10–14 (1978)

    Google Scholar 

  • J. Kastner, B. Plank, D. Salaberger, J. Sekelja. Defect and porosity determination of fibre reinforced polymers by x-ray computed tomography, in 2nd International Symposium on NDT in Aerospace 2010 (Hamburg, Germany 2010), http://www.ndt.net/article/aero2010/papers/we1a2.pdf. Accessed 23 Feb 2013

  • S.S. Kessler, S.M. Spearing, C. Soutis, Damage detection in composite materials using Lamb wave methods. Smart Mater. Struct. 11, 269–278 (2002)

    Article  Google Scholar 

  • R. Koller, S. Chang, Y. Xi, Fiber-reinforced polymer bars under freeze-thaw cycles and different loading rates. J. Compos. Mater. 41(1), 5–25 (2007)

    Article  Google Scholar 

  • M.C. Lafarie-Frenot, C. Hénaff-Gardin, Formation and growth of 90° ply fatigue cracks in carbon/epoxy laminates. Compos. Sci. Technol. 40, 307–324 (1991)

    Article  Google Scholar 

  • V. La Saponara, W. Lestari, C. Winkelmann, L. Arronche, H-Y. Tang, in Review of Progress in Quantitative Nondestructive Evaluation, San Diego, July 2010. AIP Conf. Proc. 1335, 927–934 (2011), http://proceedings.aip.org/resource/2/apcpcs/1335/1/927_1. Accessed 23 Feb 2013

  • J. Lee, C. Soutis, A study on the compressive strength of thick carbon fibre-epoxy laminates. Compos. Sci. Technol. 67(10), 2015–2026 (2007)

    Article  Google Scholar 

  • L. Liu, B.-M. Zhang, D.-F. Wang, Z.-J. Wu, Effects of cure cycles on void content and mechanical properties of composite laminates. Compos. Struct. 73(3), 303–309 (2006)

    Article  Google Scholar 

  • D. Lovering, Boeing finds new problem in 787, installing Patch. Seattle Times (2009), http://seattletimes.nwsource.com/html/localnews/2009664552_apusboeing7874thldwritethru.html. Accessed 23 Feb 2013

  • S. Mall, Integrity of graphite/epoxy laminate embedded with piezoelectric sensor/actuator under monotonic and fatigue loads. Smart Mater. Struct. 11, 527–533 (2002)

    Article  Google Scholar 

  • P.W. Manders, T.-W. Chou, F.R. Jones, J.W. Rock, Statistical analysis of multiple fracture in 0°/90°/0° glass fibre/epoxy resin laminates. J. Mater. Sci. 18, 2876–2889 (1983)

    Article  Google Scholar 

  • Mathworks, Matlab, R2011a edn. (Mathworks, Natick, 2011)

    Google Scholar 

  • L.N. McCartney, G.A. Schoeppner, W. Becker, Comparison of models for transverse ply cracks in composite laminates. Compos. Sci. Technol. 60, 2347–2359 (2010)

    Article  Google Scholar 

  • A.J. Moffat, P. Wright, L. Helfen, T. Baumbach, G. Johnson, S.M. Spearing, I. Sinclair, In situ synchrotron computed laminography of damage in carbon fibre-epoxy [90/0]s laminates. Scripta Mater. 62, 97–100 (2010)

    Article  Google Scholar 

  • S.F. Muller de Almeida, Z.S. Nogueira Neto, Effect of void content on the strength of composite laminates. Compos. Struct. 28(2), 139–148 (1994)

    Article  Google Scholar 

  • N.K. Naik, Woven-fibre thermoset composites, in Fatigue in Composites: Science and Technology of the Fatigue Response of Fibre-Reinforced Plastics, ed. by B. Harris (CRC Press, Boca Raton, 2003)

    Google Scholar 

  • A.H. Nayfeh, The general problem of elastic wave propagation in multilayered anisotropic media. J. Acoust. Soc. Am. 89(4), 1521–1531 (1991)

    Article  MathSciNet  Google Scholar 

  • K. Ogi, S. Yashiro, K. Niimi, A probabilistic approach for transverse crack evolution in a composite laminate under variable amplitude cyclic loading. Compos. Part A Appl. S 41, 383–390 (2010)

    Article  Google Scholar 

  • P. Oliver, J.P. Cottu, B. Ferret, Effects of cure cycle pressure and voids on some mechanical properties of carbon/epoxy laminates. Composites 26(7), 509–515 (1995)

    Article  Google Scholar 

  • F. París, A. Blázquez, L.N. McCartney, A. Barroso, Characterization and evolution of matrix and interface related damage in [0/90]s laminates under tension. Part II: Experimental evidence. Compos. Sci. Technol. 70, 1176–1183 (2010)

    Article  Google Scholar 

  • Y. Promboon, Acoustic Emission Source Location (The University of Texas, Austin, 2000), p. 343

    Google Scholar 

  • I. I. Qamhia, E. M. Lauer-Hunt, R. Elhajjar, Identification of acoustic emissions from porosity and waviness defects in continuous fiber reinforced composites. ASTM J. Adv. Civ. Eng. Mater. 2(1), 14 pp (2013)

    Google Scholar 

  • X.P. Qing, S.J. Beard, A. Kumar, T.K. Ooi, F.-K. Chang, Built-in sensor network for structural health monitoring of composite structures. J. Intel. Mater. Syst. Struct. 18, 39–49 (2007)

    Article  Google Scholar 

  • J.L. Rose, A. Pilarski, J.J. Ditri, An approach to guided wave mode selection for inspection of laminated plate. J. Reinf. Plast. Compos. 12, 536–544 (1993)

    Article  Google Scholar 

  • C. Roy, M. Elghorba, Monitoring progression of mode-II delamination during fatigue loading through acoustic-emission in laminated glass-fiber composite. Polym. Compos. 9(5), 345–351 (1988)

    Article  Google Scholar 

  • K. Schaaf, P. Rye, F. Ghezzo, A. Starr, S. Nemat-Nasser, Optimization of mechanical properties of composite materials with integrated embedded sensors networks, in Proceedings of SPIE, Smart Structures and Materials: Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems, vol 6174, (San Diego, CA, 2007), p. 617443 (5 pp.)

    Google Scholar 

  • P.J. Schilling, B.P.R. Karedia, A.K. Tatiparthi, M.A. Verges, P.D. Herrington, X-ray computed microtomography of internal damage in fiber reinforced polymer matrix composites. Compos. Sci. Technol. 65, 2071–2078 (2005)

    Article  Google Scholar 

  • M.P.J. Schöpfer, A. Arslan, J.J. Walsh, C. Childs, Reconciliation of contrasting theories for fracture spacing in layered rocks. J. Struct. Geol. 33, 551–565 (2011)

    Article  Google Scholar 

  • K.J. Schubert, A.S. Herrmann, On attenuation and measurement of Lamb waves in viscoelastic composites. Compos. Struct. 94, 177–185 (2011)

    Google Scholar 

  • K.J. Schubert, A.S. Herrmann, On the influence of moisture absorption on Lamb wave propagation and measurement in viscoelastic CFRP using surface applied piezoelectric sensors. Compos. Struct. 94, 3635–3643 (2012)

    Article  Google Scholar 

  • A.E. Scott, M. Mavrogordato, P. Wright, I. Sinclair, S.M. Spearing, In situ fibre fracture measurement in carbon-epoxy laminates using high resolution computed tomography. Compos. Sci. Technol. 71, 1471–1477 (2011)

    Article  Google Scholar 

  • M.D. Seale, B.T. Smith, W.H. Prosser, Lamb wave assessment of fatigue and thermal damage in composites. J. Acoust. Soc. Am. 103, 2416–2424 (1998)

    Article  Google Scholar 

  • V.V. Silberschmidt, Matrix cracking in cross-ply composites: effect of randomness. Compos. Part A Appl. S 36, 129–135 (2005)

    Article  Google Scholar 

  • D.A. Singh, A.J. Vizzini, Structural integrity of composite laminates with interlaced actuators. Smart Mater. Struct. 3, 71–79 (1994)

    Article  Google Scholar 

  • P.M. Sisneros, P. Yang, R.F. Elhajjar, Fatigue and impact behaviour of carbon fibre composite bicycle forks. Fatigue Fract. Eng. M 35(7), 672–682 (2012)

    Article  Google Scholar 

  • BF. Sørensen, R. Talreja, Effect of nonuniformity of fiber distribution on thermally-induced residual stresses and cracking in ceramic matrix composites. Mech. Mater. 16, 351–363 (1993)

    Article  Google Scholar 

  • K.V. Steiner, R.F. Eduljee, X. Huang, J.W. Gillespie, Ultrasonic NDE techniques for the evaluation of matrix cracking in composite laminates. Compos. Sci. Technol. 53(2), 193–198 (1995)

    Article  Google Scholar 

  • W.W. Stinchcomb, Nondestructive evaluation of damage accumulation processes in composite laminates. Compos. Sci. Technol. 25, 103–118 (1986)

    Article  Google Scholar 

  • Z. Su, L. Ye, Y. Lu, Guided Lamb waves for identification of damage in composite structures: a review. J. Sound Vib. 295, 753–780 (2006)

    Article  Google Scholar 

  • M.P.F. Sutcliffe, S.L. Lemanski, A.E. Scott, Measurement of fibre waviness in industrial composite components. Compos. Sci. Technol. 72(16), 2016–2023 (2012)

    Article  Google Scholar 

  • R. Talreja, C.V. Singh, Damage and Failure of Composite Materials (Cambridge University Press, New York, 2012)

    Book  Google Scholar 

  • H.-Y. Tang, C. Winkelmann, W. Lestari, V. La Saponara, Composite structural health monitoring through use of embedded PZT sensors. J. Intel. Mater. Syst. Struct. 22, 739–755 (2011)

    Article  Google Scholar 

  • M. Thomas, N. Boyard, L. Perez, Y. Jarny, D. Delaunay, Representative volume element of anisotropic unidirectional carbon-epoxy composite with high-fibre volume fraction. Compos. Sci. Technol. 68, 3184–3192 (2008)

    Article  Google Scholar 

  • J. Tong, F.J. Guild, S.L. Ogin, P.A. Smith, On matrix crack growth in quasi-isotropic laminates −1. Experimental investigation. Compos. Sci. Technol. 57, 1527–1535 (1997)

    Article  Google Scholar 

  • C. Toscano, C. Vitiello, Influence of the stacking sequence on the porosity in carbon fiber composites. J. Appl. Polym. Sci. 122(6), 3583–3589 (2011)

    Article  Google Scholar 

  • D. Tsamtsakis, M. Wevers, P. de Meester, Acoustic emission from CFRP laminates during fatigue loading. J. Reinf. Plast. Compos. 17, 1185–1201 (1998)

    Google Scholar 

  • G.Z. Voyiadjis, A.H. Almasri, Experimental study and fabric tensor quantification of microcrack distribution in composite materials. J. Compos. Mater. 41, 713–745 (2007)

    Article  Google Scholar 

  • A.S.D. Wang, K.C. Yan, On modeling matrix failure in composites. Compos. Part A Appl. S 36, 1335–1346 (2005)

    Article  Google Scholar 

  • A.W. Wharmby, F. Ellyin, J.D. Wolodko, Observations on damage development in fibre reinforced polymer laminates under cyclic loading. Int. J. Fatigue. 25, 437–446 (2003)

    Article  Google Scholar 

  • J.J. Williams, Z. Flom, A.A. Amell, N. Chawla, X. Xiao, F. De Carlo, Damage evolution in SiC particle reinforced Al alloy matrix composites by X-ray synchrotron tomography. Acta Mater. 58, 6194–6205 (2010)

    Google Scholar 

  • M.R. Wisnom, J.W. Atkinson, Fibre waviness generation and measurement and its effect on compressive strength. J. Reinf. Plast. Compos. 19(2), 96–110 (2000)

    Article  Google Scholar 

  • P.J. Withers, M. Preuss, Fatigue and damage in structural materials studied by X-ray tomography. Annu. Rev. Mater. Res. 42, 81–103 (2012)

    Article  Google Scholar 

  • S.-C. Wooh, I.M. Daniel, Wave propagation in composite materials with fibre waviness. Ultrasonics 33(1), 3–10 (1995)

    Article  Google Scholar 

  • P. Wright, A. Moffat, I. Sinclair, S.M. Spearing, High resolution tomographic imaging and modelling of notch tip damage in a laminated composite. Compos. Sci. Technol. 70, 1444–1452 (2010)

    Article  Google Scholar 

  • P. Wright, X. Fu, I. Sinclair, S.M. Spearing, Ultra-high resolution computed tomography of damage in notched carbon fiber-epoxy composites. J. Compos. Mater. 42, 1993–2002 (2008)

    Article  Google Scholar 

  • P. Yang, R. Elhajjar, Porosity defect morphology effects in carbon fiber – epoxy composites. Polym. Plast. Technol. 51(11), 1141–1148 (2012)

    Article  Google Scholar 

  • S.W. Yurgartis, B.S. MacGibbon, P. Mulvaney, Quantification of microcracking in brittle-matrix composites. J. Mater. Sci. 27, 6679–6686 (1992)

    Article  Google Scholar 

  • C. Zhang, W.K. Binienda, G.N. Morscher, R.E. Martin, L.W. Kohlman, Experimental and FEM study of thermal cycling induced microcracking in carbon/epoxy triaxial braided composites. Compos. Part A Appl. S 46, 34–44 (2013)

    Article  Google Scholar 

  • S.M. Ziola, M.R. Gorman, Source location in thin plates using cross-correlation. J. Acoust. Soc. Am. 90(5), 2551–2556 (1991)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valeria La Saponara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

La Saponara, V., Elhajjar, R. (2013). Experimental Methods to Quantify Microdamage and Microstructure Anomalies in Fiber-Reinforced Polymer Composites: Overview. In: Voyiadjis, G. (eds) Handbook of Damage Mechanics. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8968-9_15-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8968-9_15-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-8968-9

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics