Encyclopedia of Malaria

Living Edition
| Editors: Peter G. Kremsner, Sanjeev Krishna

Mitochondrial Protein Import in Malaria Parasites

  • Marcel DeponteEmail author
Living reference work entry
DOI: https://doi.org/10.1007/978-1-4614-8757-9_95-1


Mitochondria are essential organelles for malaria parasites and their hosts. Proteins from all four major mitochondrial compartments are predominantly synthesized in the cytosol. The biogenesis of mitochondria therefore requires (i) a variety of specific substrate features that are utilized for mitochondrial targeting and (ii) efficient and selective compartment-specific machineries for the recognition, sorting, processing, and folding of these substrates.


In most eukaryotes, mitochondria play a crucial role in numerous cellular processes including oxidative phosphorylation (yielding ATP) as well as the metabolism of lipids, amino acids, pyrimidines, and iron-sulfur clusters. Furthermore, in a variety of eukaryotes, mitochondrial processes even determine or regulate the fate of the whole cell during programmed cell death (Wallace and Youle 2013). Even though mitochondria contain their own genome as well as transcription and translation machineries, most...


Mitochondrial Membrane Malaria Parasite Outer Mitochondrial Membrane Transmembrane Segment Intermembrane Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. Aikawa M, Huff CG, Sprinz H. Fine structure of the asexual stages of Plasmodium elongatum. J Cell Biol. 1967;34(1):229–49.PubMedCentralPubMedCrossRefGoogle Scholar
  2. Bender A, van Dooren GG, Ralph SA, McFadden GI, Schneider G. Properties and prediction of mitochondrial transit peptides from Plasmodium falciparum. Mol Biochem Parasitol. 2003;132(2):59–66.PubMedCrossRefGoogle Scholar
  3. Chacinska A, Koehler CM, Milenkovic D, Lithgow T, Pfanner N. Importing mitochondrial proteins: machineries and mechanisms. Cell. 2009;138(4):628–44.PubMedCentralPubMedCrossRefGoogle Scholar
  4. Deponte M, Hell K. Disulphide bond formation in the intermembrane space of mitochondria. J Biochem. 2009;146(5):599–608.PubMedCrossRefGoogle Scholar
  5. Deponte M, Hoppe HC, Lee MC, Maier AG, Richard D, Rug M, et al. Wherever I may roam: protein and membrane trafficking in P. falciparum-infected red blood cells. Mol Biochem Parasitol. 2012;186(2):95–116.PubMedCrossRefGoogle Scholar
  6. Dudek J, Rehling P, van der Laan M. Mitochondrial protein import: common principles and physiological networks. Biochim Biophys Acta. 2013;1833(2):274–85.PubMedCrossRefGoogle Scholar
  7. Dukanovic J, Rapaport D. Multiple pathways in the integration of proteins into the mitochondrial outer membrane. Biochim Biophys Acta. 2011;1808(3):971–80.PubMedCrossRefGoogle Scholar
  8. Eckers E, Cyrklaff M, Simpson L, Deponte M. Mitochondrial protein import pathways are functionally conserved among eukaryotes despite compositional diversity of the import machineries. Biol Chem. 2012;393(6):513–24.PubMedCrossRefGoogle Scholar
  9. Eckers E, Petrungaro C, Gross D, Riemer J, Hell K, Deponte M. Divergent molecular evolution of the mitochondrial sulfhydryl:cytochrome c oxidoreductase Erv in opisthokonts and parasitic protists. J Biol Chem. 2013;288(4):2676–88.PubMedCentralPubMedCrossRefGoogle Scholar
  10. Endo T, Yamano K. Multiple pathways for mitochondrial protein traffic. Biol Chem. 2009;390(8):723–30.PubMedCrossRefGoogle Scholar
  11. Endo T, Yamano K, Kawano S. Structural basis for the disulfide relay system in the mitochondrial intermembrane space. Antioxid Redox Signal. 2010;13(9):1359–73.PubMedCrossRefGoogle Scholar
  12. Fry M, Beesley JE. Mitochondria of mammalian Plasmodium spp. Parasitology. 1991;102(Pt 1):17–26.PubMedCrossRefGoogle Scholar
  13. Gross J, Bhattacharya D. Mitochondrial and plastid evolution in eukaryotes: an outsiders’ perspective. Nat Rev Genet. 2009;10(7):495–505.PubMedCrossRefGoogle Scholar
  14. Hino A, Hirai M, Tanaka TQ, Watanabe YI, Matsuoka H, Kita K. Critical roles of the mitochondrial complex II in oocyst formation of rodent malaria parasite Plasmodium berghei. J Biochem. 2012;152(3):259–68.PubMedCrossRefGoogle Scholar
  15. Keeling PJ, Palmer JD. Horizontal gene transfer in eukaryotic evolution. Nat Rev Genet. 2008;9(8):605–18.PubMedCrossRefGoogle Scholar
  16. Krungkrai J, Prapunwattana P, Krungkrai SR. Ultrastructure and function of mitochondria in gametocytic stage of Plasmodium falciparum. Parasite. 2000;7(1):19–26.PubMedGoogle Scholar
  17. Lill R. Function and biogenesis of iron-sulphur proteins. Nature. 2009;460(7257):831–8.PubMedCrossRefGoogle Scholar
  18. Lithgow T, Schneider A. Evolution of macromolecular import pathways in mitochondria, hydrogenosomes and mitosomes. Philos Trans R Soc Lond B Biol Sci. 2010;365(1541):799–817.PubMedCentralPubMedCrossRefGoogle Scholar
  19. Nagaraj VA, Arumugam R, Prasad D, Rangarajan PN, Padmanaban G. Protoporphyrinogen IX oxidase from Plasmodium falciparum is anaerobic and is localized to the mitochondrion. Mol Biochem Parasitol. 2010a;174(1):44–52.PubMedCrossRefGoogle Scholar
  20. Nagaraj VA, Prasad D, Arumugam R, Rangarajan PN, Padmanaban G. Characterization of coproporphyrinogen III oxidase in Plasmodium falciparum cytosol. Parasitol Int. 2010b;59(2):121–7.PubMedCrossRefGoogle Scholar
  21. Painter HJ, Morrisey JM, Mather MW, Vaidya AB. Specific role of mitochondrial electron transport in blood-stage Plasmodium falciparum. Nature. 2007;446(7131):88–91.PubMedCrossRefGoogle Scholar
  22. Sideris DP, Tokatlidis K. Oxidative protein folding in the mitochondrial intermembrane space. Antioxid Redox Signal. 2010;13(8):1189–204.PubMedCrossRefGoogle Scholar
  23. Slomianny C, Prensier G. Application of the serial sectioning and tridimensional reconstruction techniques to the morphological study of the Plasmodium falciparum mitochondrion. J Parasitol. 1986;72(4):595–8.PubMedCrossRefGoogle Scholar
  24. Stanway RR, Mueller N, Zobiak B, Graewe S, Froehlke U, Zessin PJ, et al. Organelle segregation into Plasmodium liver stage merozoites. Cell Microbiol. 2011;13(11):1768–82.PubMedCrossRefGoogle Scholar
  25. Vaidya AB, Mather MW. Mitochondrial evolution and functions in malaria parasites. Annu Rev Microbiol. 2009;63:249–67.PubMedCrossRefGoogle Scholar
  26. van Dooren GG, Marti M, Tonkin CJ, Stimmler LM, Cowman AF, McFadden GI. Development of the endoplasmic reticulum, mitochondrion and apicoplast during the asexual life cycle of Plasmodium falciparum. Mol Microbiol. 2005;57(2):405–19.PubMedCrossRefGoogle Scholar
  27. van Dooren GG, Stimmler LM, McFadden GI. Metabolic maps and functions of the Plasmodium mitochondrion. FEMS Microbiol Rev. 2006;30(4):596–630.PubMedCrossRefGoogle Scholar
  28. Wallace DC, Youle RJ, editors. Mitochondria. New York: Cold Spring Harbor Laboratory; 2013.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Infectiology/ParasitologyHeidelberg UniversityHeidelbergGermany