Encyclopedia of Malaria

Living Edition
| Editors: Peter G. Kremsner, Sanjeev Krishna

Cytokines and Some of Their Effector Mechanisms in Cerebral Malaria Pathogenesis

  • Georges Emile Raymond Grau
  • Nicholas Henry Hunt
Living reference work entry
DOI: https://doi.org/10.1007/978-1-4614-8757-9_94-1



Cytokines, small molecules that regulate the immune response, are also capable of driving immunopathological processes. These include some of the severe complications of malaria, in particular involvement of the brain, known as cerebral malaria. To exert their deleterious effects, cytokines need to implicate a vast array of pathogenic effector mechanisms.


The pathophysiology of infectious diseases has been widely investigated. Involvement of the cells and soluble mediators of the immune system has been universally recognized as contributing to the complications of viral, bacterial, fungal, and many parasitic infections. It would be...


Malaria Infection Severe Malaria Cerebral Malaria Kynurenine Pathway Severe Malarial Anemia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. Anstey NM, Weinberg JB, Hassanali MY, Mwaikambo ED, Manyenga D, Misukonis MA, et al. Nitric oxide in Tanzanian children with malaria: inverse relationship between malaria severity and nitric oxide production/nitric oxide synthase type 2 expression. J Exp Med. 1996;184(2):557–67. PubMed PMID: 8760809.PubMedCrossRefGoogle Scholar
  2. Ashwal S, Holshouser BA, Tomasi LG, Shu S, Perkin RM, Nystrom GA, et al. 1H-magnetic resonance spectroscopy-determined cerebral lactate and poor neurological outcomes in children with central nervous system disease. Ann Neurol. 1997;41(4):470–81. PubMed PMID: 9124804.PubMedCrossRefGoogle Scholar
  3. Brandts CH, Ndjave M, Graninger W, Kremsner PG. Effect of paracetamol on parasite clearance time in Plasmodium falciparum malaria. Lancet. 1997;350(9079):704–9. PubMed PMID: 9291905.PubMedCrossRefGoogle Scholar
  4. Clark IA, Gray KM, Rockett EJ, Cowden WB, Rockett KA, Ferrante A, et al. Increased lymphotoxin in human malarial serum, and the ability of this cytokine to increase plasma interleukin-6 and cause hypoglycaemia in mice: implications for malarial pathology. Trans R Soc Trop Med Hyg. 1992;86(6):602–7. PubMed PMID: 1287910.PubMedCrossRefGoogle Scholar
  5. Coltel N, Combes V, Hunt NH, Grau GE. Cerebral malaria – a neurovascular pathology with many riddles still to be solved. Curr Neurovasc Res. 2004;1(2):91–110. PubMed PMID: 16185187.PubMedCrossRefGoogle Scholar
  6. Combes V, El-Assaad F, Faille D, Jambou R, Hunt NH, Grau GE. Microvesiculation and cell interactions at the brain-endothelial interface in cerebral malaria pathogenesis. Prog Neurobiol. 2010;91(2):140–51. PubMed PMID: 20117166.PubMedCrossRefGoogle Scholar
  7. El-Assaad F, Wheway J, Hunt NH, Combes V, Grau GE. Production, fate and pathogenicity of plasma microparticles in murine cerebral malaria. PLoS Pathog. 2014;10(3):e1003839. PubMed PMID: 24651155. Pubmed Central PMCID: 3961352.PubMedCentralPubMedCrossRefGoogle Scholar
  8. Faille D, El-Assaad F, Alessi MC, Fusai T, Combes V, Grau GE. Platelet-endothelial cell interactions in cerebral malaria: the end of a cordial understanding. Thromb Haemost. 2009;102(6):1093–102. PubMed PMID: 19967139.PubMedGoogle Scholar
  9. Francischetti IM, Seydel KB, Monteiro RQ, Whitten RO, Erexson CR, Noronha AL, et al. Plasmodium falciparum-infected erythrocytes induce tissue factor expression in endothelial cells and support the assembly of multimolecular coagulation complexes. J Thromb Haemost. 2007;5(1):155–65. PubMed PMID: 17002660. Pubmed Central PMCID: 2892312. Epub 2006/09/28. eng.PubMedCentralPubMedCrossRefGoogle Scholar
  10. Grau GE, Taylor TE, Molyneux ME, Wirima JJ, Vassalli P, Hommel M, et al. Tumor necrosis factor and disease severity in children with falciparum malaria. N Engl J Med. 1989;320(24):1586–91. PubMed PMID: 2657427.PubMedCrossRefGoogle Scholar
  11. Howland SW, Poh CM, Gun SY, Claser C, Malleret B, Shastri N, et al. Brain microvessel cross-presentation is a hallmark of experimental cerebral malaria. EMBO Mol Med. 2013;5(7):916–31. PubMed PMID: 23681698. Pubmed Central PMCID: 3721469.PubMedCentralPubMedCrossRefGoogle Scholar
  12. Hunt NH, Grau GE. Cytokines: accelerators and brakes in the pathogenesis of cerebral malaria. Trends Immunol. 2003;24(9):491–9. PubMed PMID: 12967673.PubMedCrossRefGoogle Scholar
  13. Hunt NH, Golenser J, Chan-Ling T, Parekh S, Rae C, Potter S, et al. Immunopathogenesis of cerebral malaria. Int J Parasitol. 2006;36(5):569–82. PubMed PMID: 16678181. Epub 2006/05/09. eng.PubMedCrossRefGoogle Scholar
  14. Idro R, Kakooza-Mwesige A, Balyejjussa S, Mirembe G, Mugasha C, Tugumisirize J, et al. Severe neurological sequelae and behaviour problems after cerebral malaria in Ugandan children. BMC Res Notes. 2010;3:104. Pubmed Central PMCID: 2861066. Epub 2010/04/20. eng.PubMedCentralPubMedCrossRefGoogle Scholar
  15. Jambou R, Combes V, Jambou MJ, Weksler BB, Couraud PO, Grau GE. Plasmodium falciparum adhesion on human brain microvascular endothelial cells involves transmigration-like cup formation and induces opening of intercellular junctions. PLoS Pathog. 2010;6(7):e1001021. PubMed PMID: 20686652. Pubmed Central PMCID: 2912387.PubMedCentralPubMedCrossRefGoogle Scholar
  16. Kern P, Hemmer CJ, Van Damme J, Gruss HJ, Dietrich M. Elevated tumor necrosis factor alpha and interleukin-6 serum levels as markers for complicated Plasmodium falciparum malaria. Am J Med. 1989;87(2):139–43. PubMed PMID: 2667356.PubMedCrossRefGoogle Scholar
  17. Kwiatkowski D, Hill AV, Sambou I, Twumasi P, Castracane J, Manogue KR, et al. TNF concentration in fatal cerebral, non-fatal cerebral, and uncomplicated Plasmodium falciparum malaria. Lancet. 1990;336(8725):1201–4. PubMed PMID: 1978068.PubMedCrossRefGoogle Scholar
  18. Mannel DN, Grau GE. Role of platelet adhesion in homeostasis and immunopathology. Mol Pathol. 1997;50(4):175–85. PubMed PMID: 9350300.PubMedCentralPubMedCrossRefGoogle Scholar
  19. Miu J, Mitchell AJ, Muller M, Carter SL, Manders PM, McQuillan JA, et al. Chemokine gene expression during fatal murine cerebral malaria and protection due to CXCR3 deficiency. J Immunol. 2008;180(2):1217–30. PubMed PMID: 18178862. Epub 2008/01/08. eng.PubMedCrossRefGoogle Scholar
  20. Penet MF, Abou-Hamdan M, Coltel N, Cornille E, Grau GE, de Reggi M, et al. Protection against cerebral malaria by the low-molecular-weight thiol pantethine. Proc Natl Acad Sci U S A. 2008;105(4):1321–6. PubMed PMID: 18195363. Epub 2008/01/16. eng.PubMedCentralPubMedCrossRefGoogle Scholar
  21. Planche T, Macallan DC, Sobande T, Borrmann S, Kun JF, Krishna S, et al. Nitric oxide generation in children with malaria and the NOS2G-954C promoter polymorphism. Am J Physiol Regul Integr Comp Physiol. 2010;299(5):R1248–53. PubMed PMID: 20811009.PubMedCrossRefGoogle Scholar
  22. Porta J, Carota A, Pizzolato GP, Wildi E, Widmer MC, Margairaz C, et al. Immunopathological changes in human cerebral malaria. Clin Neuropathol. 1993;12(3):142–6.PubMedGoogle Scholar
  23. Schofield L, Grau GE. Immunological processes in malaria pathogenesis. Nat Rev Immunol. 2005;5(9):722–35. PubMed PMID: 16138104.PubMedCrossRefGoogle Scholar
  24. Toro G, Roman G. Cerebral malaria. A disseminated vasculomyelinopathy. Arch Neurol. 1978;35(5):271–5. PubMed PMID: 348169.PubMedCrossRefGoogle Scholar
  25. Turner GD, Morrison H, Jones M, Davis TM, Looareesuwan S, Buley ID, et al. An immunohistochemical study of the pathology of fatal malaria. Evidence for widespread endothelial activation and a potential role for intercellular adhesion molecule-1 in cerebral sequestration. Am J Pathol. 1994;145(5):1057–69.PubMedCentralPubMedGoogle Scholar
  26. van Hensbroek MB, Palmer A, Onyiorah E, Schneider G, Jaffar S, Dolan G, et al. The effect of a monoclonal antibody to tumor necrosis factor on survival from childhood cerebral malaria. J Infect Dis. 1996;174(5):1091–7. PubMed PMID: 8896514.PubMedCrossRefGoogle Scholar
  27. Warrell DA, Veal N, Chanthavanich P, Karbwang J, White NJ, Looareesuwan S, et al. Cerebral anaerobic glycolysis and reduced cerebral oxygen transport in human cerebral malaria. Lancet. 1988;2:534–7.PubMedCrossRefGoogle Scholar
  28. Wassmer SC, Cianciolo GJ, Combes V, Grau GE. Inhibition of endothelial activation: a new way to treat cerebral malaria? PLoS Med. 2005;2(9):e245. PubMed PMID: 16104828. Pubmed Central PMCID: 1188254.PubMedCentralPubMedCrossRefGoogle Scholar
  29. Wassmer SC, Combes V, Grau GE. Platelets and microparticles in cerebral malaria: the unusual suspects. Drug Discov Today. http://dx.doi.org/10.1016/j.ddmec.2011.11.004 (2012).
  30. WHO. Guidelines for the treatment of malaria. 2nd ed. Geneva: WHO; 2010. http://www.who.int/malaria/publications/atoz/9789241547925/en/index.html.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Georges Emile Raymond Grau
    • 1
  • Nicholas Henry Hunt
    • 2
  1. 1.Vascular Immunology Unit, Department of Pathology, Sydney Medical SchoolThe University of SydneySydneyAustralia
  2. 2.Molecular Immunopathology Unit, Department of Pathology, Sydney Medical SchoolThe University of SydneySydneyAustralia