Encyclopedia of Malaria

Living Edition
| Editors: Peter G. Kremsner, Sanjeev Krishna

Physiopathology of Malaria During Pregnancy: Adhesion and Sequestration Phenotypes of Malaria Infection

  • Fabio Trindade Maranhão Costa
  • Letusa Albrecht
  • Nicaise Tuikue Ndam
Living reference work entry
DOI: https://doi.org/10.1007/978-1-4614-8757-9_66-1



Cytoadhesion in malaria is the ability of the parasite to adhere to endothelial cell receptors. Cytoadhesion during pregnancy may occur at the placenta where the Plasmodium parasites can adhere to CSA receptors.


Adult women living in a malaria-endemic area are more susceptible to malaria symptomatic disease during the first pregnancy. Although severe malaria is more common during the first years in life, malaria during pregnancy, especially in the first pregnancy, is a peculiar case. Malaria in pregnancy can cause severe disease to the mother and to the fetus. Severe maternal anemia and low birth weight babies are some consequences of malaria in pregnancy (Brabin 1983).

The sequestration of the parasite in the placenta is a mechanism that protects the parasite from being eliminated by the spleen. On the other hand, for the host, the sequestration of infected...


Severe Malaria Cerebral Malaria Infected Erythrocyte Placental Malaria Endothelial Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. Albrecht L, Castiñeiras C, Carvalho BO, Ladeia-Andrade S, SantosdaSilva N, Hoffmann EHE, et al. The South American Plasmodium falciparum var gene repertoire is limited, highly shared and possibly lacks several antigenic types. Gene. 2010;453(1–2):37–44.CrossRefPubMedGoogle Scholar
  2. Bernabeu M, Lopez FJ, Ferrer M, Martin-Jaular L, Razaname A, Corradin G, et al. Functional analysis of Plasmodium vivax VIR proteins reveals different subcellular localizations and cytoadherence to the ICAM-1 endothelial receptor. Cell Microbiol. 2012;14(3):386–400.CrossRefPubMedGoogle Scholar
  3. Bordbar B, Tuikue-Ndam N, Bigey P, Doritchamou J, Scherman D, Deloron P. Identification of Id1-DBL2X of VAR2CSA as a key domain inducing highly inhibitory and cross-reactive antibodies. Vaccine. 2012;30(7):1343–8.CrossRefPubMedGoogle Scholar
  4. Brabin BJ. An analysis of malaria in pregnancy in Africa. Bull World Health Organ. 1983;61(6):1005–16.PubMedCentralPubMedGoogle Scholar
  5. Brolin KJM, Ribacke U, Nilsson S, Ankarklev J, Moll K, Wahlgren M, et al. Simultaneous transcription of duplicated var2csa gene copies in individual Plasmodium falciparum parasites. Genome Biol. 2009;10(10):R117.PubMedCentralCrossRefPubMedGoogle Scholar
  6. Bull PC, Lowe BS, Kortok M, Molyneux CS, Newbold CI, Marsh K. Parasite antigens on the infected red cell surface are targets for naturally acquired immunity to malaria. Nat Med. 1998;4(3):358–60.PubMedCentralCrossRefPubMedGoogle Scholar
  7. Carvalho BO, Lopes SCP, Nogueira PA, Orlandi PP, Bargieri DY, Blanco YC, et al. On the cytoadhesion of Plasmodium vivax-infected erythrocytes. J Infect Dis. 2010;202(4):638–47.CrossRefPubMedGoogle Scholar
  8. Cham GKK, Turner L, Kurtis JD, Mutabingwa T, Fried M, Jensen ATR, et al. Hierarchical, domain type-specific acquisition of antibodies to Plasmodium falciparum erythrocyte membrane protein 1 in Tanzanian children. Infect Immun. 2010;78(11):4653–9.PubMedCentralCrossRefPubMedGoogle Scholar
  9. Chotivanich K, Udomsangpetch R, Suwanarusk R, Pukrittayakamee S, Wilairatana P, Beeson JG, et al. Plasmodium vivax adherence to placental glycosaminoglycans. PLoS One. 2012;7(4), e34509.PubMedCentralCrossRefPubMedGoogle Scholar
  10. Doritchamou J, Bertin G, Moussiliou A, Bigey P, Viwami F, Ezinmegnon S, et al. First-trimester Plasmodium falciparum infections display a typical « placental » phenotype. J Infect Dis. 2012;206(12):1911–9.CrossRefPubMedGoogle Scholar
  11. Doritchamou J, Bigey P, Nielsen M, Gnidehou S, Ezinmegnon S, Burgain A, et al. Differential adhesion-inhibitory patterns of antibodies raised against two major variants of the NTS-DBL2X region of VAR2CSA. Vaccine. 2013;31:4516–22.CrossRefPubMedGoogle Scholar
  12. Druilhe P, Hagan P, Rook GAW. The importance of models of infection in the study of disease resistance. Trends Microbiol. 2002;10(10 Suppl):S38–46.CrossRefPubMedGoogle Scholar
  13. Duffy PE, Fried M. Plasmodium falciparum adhesion in the placenta. Curr Opin Microbiol. 2003;6(4):371–6.CrossRefPubMedGoogle Scholar
  14. Field JW, Sandosham AA, Fong YL. A morphological study of the erythrocytic parasites in thick blood films. In: The microscopic diagnosis of human malaria. Kuala Lumpur: The Government Press; 1963. p. 20–117.Google Scholar
  15. Fried M, Duffy PE. Adherence of Plasmodium falciparum to chondroitin sulfate A in the human placenta. Science. 1996;272(5267):1502–4.CrossRefPubMedGoogle Scholar
  16. Fried M, Nosten F, Brockman A, Brabin BJ, Duffy PE. Maternal antibodies block malaria. Nature. 1998;395(6705):851–2.CrossRefPubMedGoogle Scholar
  17. Hall N, Carlton J. Comparative genomics of malaria parasites. Curr Opin Genet Dev. 2005;15(6):609–13.CrossRefPubMedGoogle Scholar
  18. Hviid L, Marinho CRF, Staalsoe T, Penha-Gonçalves C. Of mice and women: rodent models of placental malaria. Trends Parasitol. 2010;26(8):412–9.CrossRefPubMedGoogle Scholar
  19. Lavstsen T, Turner L, Saguti F, Magistrado P, Rask TS, Jespersen JS, et al. Plasmodium falciparum erythrocyte membrane protein 1 domain cassettes 8 and 13 are associated with severe malaria in children. Proc Natl Acad Sci U S A. 2012;109(26):E1791–800.PubMedCentralCrossRefPubMedGoogle Scholar
  20. Magistrado PA, Minja D, Doritchamou J, Ndam NT, John D, Schmiegelow C, et al. High efficacy of anti DBL4ɛ-VAR2CSA antibodies in inhibition of CSA-binding Plasmodium falciparum-infected erythrocytes from pregnant women. Vaccine. 2011;29(3):437–43.CrossRefPubMedGoogle Scholar
  21. Marín-Menéndez A, Bardají A, Martínez-Espinosa FE, Bôtto-Menezes C, Lacerda MV, Ortiz J, et al. Rosetting in Plasmodium vivax: a cytoadhesion phenotype associated with anaemia. PLoS Negl Trop Dis. 2013;7(4), e2155.PubMedCentralCrossRefPubMedGoogle Scholar
  22. Miller LH, Baruch DI, Marsh K, Doumbo OK. The pathogenic basis of malaria. Nature. 2002;415(6872):673–9.CrossRefPubMedGoogle Scholar
  23. Neres R, Marinho CRF, Gonçalves LA, Catarino MB, Penha-Gonçalves C. Pregnancy outcome and placenta pathology in Plasmodium berghei ANKA infected mice reproduce the pathogenesis of severe malaria in pregnant women. PLoS One. 2008;3(2), e1608.PubMedCentralCrossRefPubMedGoogle Scholar
  24. Rogerson SJ, Katundu P, Molyneux ME. Rosette formation by clinical isolates of Plasmodium falciparum in serum-free medium. Trans R Soc Trop Med Hyg. 2000;94(4):461–2.CrossRefPubMedGoogle Scholar
  25. Rogerson SJ, Mwapasa V, Meshnick SR. Malaria in pregnancy: linking immunity and pathogenesis to prevention. Am J Trop Med Hyg. 2007;77(6 Suppl):14–22.PubMedGoogle Scholar
  26. Rowe A, Obeiro J, Newbold CI, Marsh K. Plasmodium falciparum rosetting is associated with malaria severity in Kenya. Infect Immun. 1995;63(6):2323–6.PubMedCentralPubMedGoogle Scholar
  27. Russell B, Suwanarusk R, Borlon C, Costa FTM, Chu CS, Rijken MJ, et al. A reliable ex vivo invasion assay of human reticulocytes by Plasmodium vivax. Blood. 2011;118(13):e74–81.PubMedCentralCrossRefPubMedGoogle Scholar
  28. Salanti A, Staalsoe T, Lavstsen T, Jensen ATR, Sowa MPK, Arnot DE, et al. Selective upregulation of a single distinctly structured var gene in chondroitin sulphate A-adhering Plasmodium falciparum involved in pregnancy-associated malaria. Mol Microbiol. 2003;49(1):179–91.CrossRefPubMedGoogle Scholar
  29. Souza RM, Ataíde R, Dombrowski JG, Ippólito V, Aitken EH, Valle SN, et al. Placental histopathological changes associated with Plasmodium vivax infection during pregnancy. PLoS Negl Trop Dis. 2013;7(2), e2071.PubMedCentralCrossRefPubMedGoogle Scholar
  30. Steketee RW, Nahlen BL, Parise ME, Menendez C. The burden of malaria in pregnancy in malaria-endemic areas. Am J Trop Med Hyg. 2001;64(1–2 Suppl):28–35.PubMedGoogle Scholar
  31. Takem EN, D’Alessandro U. Malaria in pregnancy. Mediterr J Hematol Infect Dis. 2013;5(1), e2013010.PubMedCentralCrossRefPubMedGoogle Scholar
  32. Taylor TE, Fu WJ, Carr RA, Whitten RO, Mueller JS, Fosiko NG, et al. Differentiating the pathologies of cerebral malaria by postmortem parasite counts. Nat Med. 2004;10(2):143–5.CrossRefPubMedGoogle Scholar
  33. Trimnell AR, Kraemer SM, Mukherjee S, Phippard DJ, Janes JH, et al. Global genetic diversity and evolution of var genes associated with placental and severe childhood malaria. Mol Biochem Parasitol. 2006;148:169–180.CrossRefPubMedGoogle Scholar
  34. Tuikue Ndam NG, Fievet N, Bertin G, Cottrell G, Gaye A, Deloron P. Variable adhesion abilities and overlapping antigenic properties in placental Plasmodium falciparum isolates. J Infect Dis. 2004;190(11):2001–9.CrossRefPubMedGoogle Scholar
  35. Tuikue Ndam NG, Salanti A, Bertin G, Dahlbäck M, Fievet N, Turner L, et al. High level of var2csa transcription by Plasmodium falciparum isolated from the placenta. J Infect Dis. 2005;192(2):331–5.CrossRefPubMedGoogle Scholar
  36. Turner L, Lavstsen T, Berger SS, Wang CW, Petersen JEV, Avril M, et al. Severe malaria is associated with parasite binding to endothelial protein C receptor. Nature. 2013;498:502–505.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Genetics, Evolution and Bioagents, Institute of BiologyUniversity of CampinasCampinasBrazil
  2. 2.Institute Carlos Chagas, FIOCRUZ-PARANÁPRBrazil
  3. 3.PRES Sorbonne Paris Cité, Faculté de PharmacieUniversité Paris DescartesParisFrance
  4. 4.Mother and Child Health in the Tropics, Faculté de PharmacieInstitut de Recherche pour le Développement (IRD), UMR216-MERIT, Université Paris DescartesParisFrance