Encyclopedia of Malaria

Living Edition
| Editors: Peter G. Kremsner, Sanjeev Krishna

Druggable Biochemical Targets: Facts and Fancies

Living reference work entry
DOI: https://doi.org/10.1007/978-1-4614-8757-9_56-1



Biochemical target: macromolecule (protein or non-protein) that is (i) vital for the malaria parasite, or critical for its interaction and propagation within the human host, and (ii) functionally blocked by a drug.

What Is a Biochemical Target?

In medical sciences, the notion of target is versatile enough to be used in various, sometimes overlapping, meanings, qualifying any biological object and/or phenomenon, one aims to act on as part of a therapy. It follows that a targetcan be defined at different scales, as a phenotype expressed by the patient (e.g., symptoms including fever, weakness, and pain), a biological process causing the disease (e.g., a vital metabolic pathway in the pathogen or a molecular mechanism involved in the infection), a subcellular structure (e.g., a vital organelle of the pathogen), a protein (e.g., a vital enzyme of a pathogen), a protein domain (e.g., a “pocket” at the surface of a protein, where a drug can dock;...


Folate Plasmodium Quinoline Chloroquine Dock 
This is a preview of subscription content, log in to check access


  1. Aurrecoechea C, Brestelli J, Brunk BP, Dommer J, Fischer S, Gajria B, et al. PlasmoDB: a functional genomic database for malaria parasites. Nucleic Acids Res. 2009;37(Database issue):D539–43.PubMedCentralPubMedCrossRefGoogle Scholar
  2. Baird JK. Effectiveness of antimalarial drugs. N Engl J Med. 2005;352(15):1565–77.PubMedCrossRefGoogle Scholar
  3. Botté CY, Dubar F, McFadden GI, Maréchal E, Biot C. Plasmodium falciparum apicoplast drugs: targets or off-targets? Chem Rev. 2012;25(112):1269–83.CrossRefGoogle Scholar
  4. Bray PG, Ward SA, O’Neill PM. Quinolines and artemisinin: chemistry, biology and history. Curr Top Microbiol Immunol. 2005;295:3–38.PubMedGoogle Scholar
  5. Camara D, Bisanz C, Barette C, Van Daele J, Human E, Barnard B, et al. Inhibition of p-aminobenzoate and folate syntheses in plants and apicomplexan parasites by natural product rubreserine. J Biol Chem. 2012;287(26):22367–76.PubMedCentralPubMedCrossRefGoogle Scholar
  6. Cohen SN, Phifer KO, Yielding KL. Complex formation between chloroquine and ferrihaemic acid in vitro, and its effect on the antimalarial action of chloroquine. Nature. 1964;202:805–6.PubMedCrossRefGoogle Scholar
  7. Ecker A, Lehane AM, Clain J, Fidock DA. PfCRT and its role in antimalarial drug resistance. Trends Parasitol. 2012;28(11):504–14.PubMedCentralPubMedCrossRefGoogle Scholar
  8. Farooq U, Mahajan RC. Drug resistance in malaria. J Vector Borne Dis. 2004;41(3-4):45–53.PubMedGoogle Scholar
  9. Flückiger FA, Hanbury D. Pharmacographia: a history of the principal drugs of vegetable origin, met with in Great Britain and British India. London: Macmillan; 1874.Google Scholar
  10. Foley M, Tilley L. Quinoline antimalarials: mechanisms of action and resistance and prospects for new agents. Pharmacol Ther. 1998;79(1):55–87.PubMedCrossRefGoogle Scholar
  11. Gardner MJ, Hall N, Fung E, White O, Berriman M, Hyman RW, et al. Genome sequence of the human malaria parasite Plasmodium falciparum. Nature. 2002;419(6906):498–511.PubMedCrossRefGoogle Scholar
  12. Ginsburg H. Progress in in silico functional genomics: the malaria metabolic pathways database. Trends Parasitol. 2006;22(6):238–40.PubMedCrossRefGoogle Scholar
  13. Gorka AP, de Dios A, Roepe PD. Quinoline drug-heme interactions and implications for antimalarial cytostatic versus cytocidal activities. J Med Chem. 2013;56:5231–46.PubMedCrossRefGoogle Scholar
  14. Holt RA, Subramanian GM, Halpern A, Sutton GG, Charlab R, Nusskern DR, et al. The genome sequence of the malaria mosquito Anopheles gambiae. Science. 2002;298(5591):129–49.PubMedCrossRefGoogle Scholar
  15. Kappe SH, Vaughan AM, Boddey JA, Cowman AF. That was then but this is now: malaria research in the time of an eradication agenda. Science. 2010;328(5980):862–6.PubMedCrossRefGoogle Scholar
  16. Kaur K, Jain M, Reddy RP, Jain R. Quinolines and structurally related heterocycles as antimalarials. Eur J Med Chem. 2010;45(8):3245–64.PubMedCrossRefGoogle Scholar
  17. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, et al. Initial sequencing and analysis of the human genome. Nature. 2001;409(6822):860–921.PubMedCrossRefGoogle Scholar
  18. Laveran A. Nature parasitaire des accidents de l’impaludisme. Description d’un nouveau parasite trouvé dans le sang des malades atteints de fièvre palustre. Paris: J-B Baillière et fils; 1881.Google Scholar
  19. Maréchal E. Chemogenomics: a discipline at the crossroad of high throughput technologies, biomarker research, combinatorial chemistry, genomics, cheminformatics, bioinformatics and artificial intelligence. Comb Chem High Throughput Screen. 2008;11(8):582.PubMedCrossRefGoogle Scholar
  20. Nerlich AG, Schraut B, Dittrich S, Jelinek T, Zink AR. Plasmodium falciparum in ancient Egypt. Emerg Infect Dis. 2008;14(8):1317–9.PubMedCentralPubMedCrossRefGoogle Scholar
  21. Nzila A. The past, present and future of antifolates in the treatment of Plasmodium falciparum infection. J Antimicrob Chemother. 2006;57(6):1043–54.PubMedCrossRefGoogle Scholar
  22. O’Neill PM, Barton VE, Ward SA. The molecular mechanism of action of artemisinin–the debate continues. Molecules. 2010;15(3):1705–21.PubMedCrossRefGoogle Scholar
  23. Olliaro P. Mode of action and mechanisms of resistance for antimalarial drugs. Pharmacol Therapeut. 2001;89(2):207–19.CrossRefGoogle Scholar
  24. Saidani N, Grando D, Valadie H, Bastien O, Maréchal E. Potential and limits of in silico target discovery – case study of the search for new antimalarial chemotherapeutic targets. Infect Genet Evol. 2009;9(3):359–67.PubMedCrossRefGoogle Scholar
  25. Sakata T, Winzeler EA. Genomics, systems biology and drug development for infectious diseases. Mol Biosyst. 2007;3(12):841–8.PubMedCrossRefGoogle Scholar
  26. Woodrow CJ, Haynes RK, Krishna S. Artemisinins. Postgrad Med J. 2005;81(952):71–8.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Laboratoire de Physiologie Cellulaire VégétaleUnité mixte de recherche 5168 CNRS – CEA – UnivGrenobleFrance