Skip to main content

Rab Proteins

  • Living reference work entry
  • First Online:
Encyclopedia of Malaria

Synonyms

GAP – GTPase-activating protein; GDP – guanosine diphosphate; GEF – GTP exchange factor; GTP – guanosine triphosphate; Inner membrane complex – IMC; MLC1 – myosin light chain 1; MTIP – myosin tail-interacting protein; Myosin A – MyoA; rabGDI – Rab GDP dissociation inhibitor

Definition

Importantly, Plasmodium parasites are able to survive inside erythrocytes that are deficient in de novo protein and lipid biosynthesis and, furthermore, are meant to lack secretory, endocytic, and phagocytic capacities. In spite of this, the parasite manages to secrete and take up substances across the three membrane barriers, and to do so it must establish novel permeation and transport pathways for small solutes and macromolecules (Spielmann and Gilberger 2010; see also “Protein Export”and “Protein Traffic”). The infection of human erythrocytes by Plasmodiumposes, therefore, not only a major public health problem but also a cellular microbiology problem of great complexity. To insure its...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Agop-Nersesian C, Egarter S, Langsley G, Foth BJ, Ferguson DJ, Meissner M. Biogenesis of the inner membrane complex is dependent on vesicular transport by the alveolate specific GTPase Rab11B. PLoS Pathog. 2010;6(7):e1001029.

    Article  PubMed Central  PubMed  Google Scholar 

  • Agop-Nersesian C, Naissant B, Ben Rached F, Rauch M, Kretzschmar A, Thiberge S, et al. Rab11A-controlled assembly of the inner membrane complex is required for completion of apicomplexan cytokinesis. PLoS Pathog. 2009;5(1):e1000270.

    Article  PubMed Central  PubMed  Google Scholar 

  • Attal G, Langsley G. A Plasmodium falciparum homologue of a rab specific GDP dissociation inhibitor. Mol Biochem Parasitol. 1996;79(1):91–5.

    Article  CAS  PubMed  Google Scholar 

  • Babbitt SE, Altenhofen L, Cobbold SA, Istvan ES, Fennell C, Doerig C, et al. Plasmodium falciparum responds to amino acid starvation by entering into a hibernatory state. Proc Natl Acad Sci U S A. 2012;109(47):E3278–87.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Baluska F, Menzel D, Barlow PW. Cytokinesis in plant and animal cells: endosomes ‘shut the door’. Dev Biol. 2006;294(1):1–10.

    Article  CAS  PubMed  Google Scholar 

  • Barik S, Taylor RE, Chakrabarti D. Identification, cloning, and mutational analysis of the casein kinase 1 cDNA of the malaria parasite, Plasmodium falciparum. Stage-specific expression of the gene. J Biol Chem. 1997;272(42):26132–8.

    Article  CAS  PubMed  Google Scholar 

  • Bradley PJ, Ward C, Cheng SJ, Alexander DL, Coller S, Coombs GH, et al. Proteomic analysis of rhoptry organelles reveals many novel constituents for host-parasite interactions in Toxoplasma gondii. J Biol Chem. 2005;280(40):34245–58.

    Article  CAS  PubMed  Google Scholar 

  • Bucci C, Thomsen P, Nicoziani P, McCarthy J, van Deurs B. Rab7: a key to lysosome biogenesis. Mol Biol Cell. 2000;11(2):467–80.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Casey PJ, Seabra MC. Protein prenyltransferases. J Biol Chem. 1996;271(10):5289–92.

    Article  CAS  PubMed  Google Scholar 

  • Chakrabarti D, Azam T, DelVecchio C, Qiu L, Park YI, Allen CM. Protein prenyl transferase activities of Plasmodium falciparum. Mol Biochem Parasitol. 1998;94(2):175–84.

    Article  CAS  PubMed  Google Scholar 

  • Chattopadhyay D, Langsley G, Carson M, Recacha R, DeLucas L, Smith C. Structure of the nucleotide-binding domain of Plasmodium falciparum rab6 in the GDP-bound form. Acta Crystallogr D Biol Crystallogr. 2000a;56(Pt 8):937–44.

    Article  CAS  PubMed  Google Scholar 

  • Chattopadhyay D, Smith CD, Barchue J, Langsley G. Plasmodium falciparum rab6 GTPase: expression, purification, crystallization and preliminary crystallographic studies. Acta Crystallogr D Biol Crystallogr. 2000b;56(Pt 8):1017–9.

    Article  CAS  PubMed  Google Scholar 

  • Chavrier P, Gorvel JP, Stelzer E, Simons K, Gruenberg J, Zerial M. Hypervariable C-terminal domain of rab proteins acts as a targeting signal. Nature. 1991;353(6346):769–72.

    Article  CAS  PubMed  Google Scholar 

  • de Castro FA, Ward GE, Jambou R, Attal G, Mayau V, Jaureguiberry G, et al. Identification of a family of Rab G-proteins in Plasmodium falciparum and a detailed characterisation of pfrab6. Mol Biochem Parasitol. 1996;80(1):77–88.

    Article  PubMed  Google Scholar 

  • Donald RG, Zhong T, Meijer L, Liberator PA. Characterization of two T. gondii CK1 isoforms. Mol Biochem Parasitol. 2005;141(1):15–27.

    Article  CAS  PubMed  Google Scholar 

  • Duszenko M, Ginger ML, Brennand A, Gualdron-Lopez M, Colombo MI, Coombs GH, et al. Autophagy in protists. Autophagy. 2011;7(2):127–58.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Eggers CT, Schafer JC, Goldenring JR, Taylor SS. D-AKAP2 interacts with Rab4 and Rab11 through its RGS domains and regulates transferrin receptor recycling. J Biol Chem. 2009;284(47):32869–80.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Elliott DA, McIntosh MT, Hosgood 3rd HD, Chen S, Zhang G, Baevova P, et al. Four distinct pathways of hemoglobin uptake in the malaria parasite Plasmodium falciparum. Proc Natl Acad Sci U S A. 2008;105(7):2463–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Goldberg DE. Hemoglobin degradation. Curr Top Microbiol Immunol. 2005;295:275–91.

    CAS  PubMed  Google Scholar 

  • Grosshans BL, Ortiz D, Novick P. Rabs and their effectors: achieving specificity in membrane traffic. Proc Natl Acad Sci U S A. 2006;103(32):11821–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gruenberg J, Maxfield FR. Membrane transport in the endocytic pathway. Curr Opin Cell Biol. 1995;7(4):552–63.

    Article  CAS  PubMed  Google Scholar 

  • Gutierrez MG, Munafo DB, Beron W, Colombo MI. Rab7 is required for the normal progression of the autophagic pathway in mammalian cells. J Cell Sci. 2004;117(Pt 13):2687–97.

    Article  CAS  PubMed  Google Scholar 

  • Herm-Gotz A, Agop-Nersesian C, Munter S, Grimley JS, Wandless TJ, Frischknecht F, et al. Rapid control of protein level in the apicomplexan Toxoplasma gondii. Nat Methods. 2007;4(12):1003–5.

    Article  PubMed Central  PubMed  Google Scholar 

  • Hirota Y, Kuronita T, Fujita H, Tanaka Y. A role for Rab5 activity in the biogenesis of endosomal and lysosomal compartments. Biochem Biophys Res Commun. 2007;364(1):40–7.

    Article  CAS  PubMed  Google Scholar 

  • Jones ML, Tay CL, Rayner JC. Getting stuck in: protein palmitoylation in Plasmodium. Trends Parasitol. 2012;28(11):496–503.

    Article  CAS  PubMed  Google Scholar 

  • Kremer K, Kamin D, Rittweger E, Wilkes J, Flammer H, Mahler S, et al. An overexpression screen of Toxoplasma gondii Rab-GTPases reveals distinct transport routes to the micronemes. PLoS Pathog. 2013;9(3):e1003213.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Langsley G, Chakrabarti D. Plasmodium falciparum: the small GTPase rab11. Exp Parasitol. 1996;83(2):250–1.

    Article  CAS  PubMed  Google Scholar 

  • Langsley G, van Noort V, Carret C, Meissner M, de Villiers EP, Bishop R, et al. Comparative genomics of the Rab protein family in Apicomplexan parasites. Microbes Infect. 2008;10(5):462–70.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lasonder E, Green JL, Camarda G, Talabani H, Holder AA, Langsley G, et al. The Plasmodium falciparum schizont phosphoproteome reveals extensive phosphatidylinositol and cAMP-protein kinase A signaling. J Proteome Res. 2012a;11(11):5323–37.

    Article  CAS  PubMed  Google Scholar 

  • Lasonder E, Treeck M, Alam M, Tobin AB. Insights into the Plasmodium falciparum schizont phospho-proteome. Microbes Infect. 2012b;14(10):811–9.

    Article  CAS  PubMed  Google Scholar 

  • Lazarus MD, Schneider TG, Taraschi TF. A new model for hemoglobin ingestion and transport by the human malaria parasite Plasmodium falciparum. J Cell Sci. 2008;121(Pt 11):1937–49.

    Article  CAS  PubMed  Google Scholar 

  • Ndjembo Ezougou C, Ben-Rached F, Moss DK, Lin J-w, Black S, et al. Plasmodium falciparum Rab5B Is an N-Terminally Myristoylated Rab GTPase That Is Targeted to the Parasite’s Plasma and Food Vacuole Membranes. PLoS ONE 2014;9(2):e87695. doi:10.1371/journal.pone.0087695

    Google Scholar 

  • Novick PJ, Goud B, Salminen A, Walworth NC, Nair J, Potenza M. Regulation of vesicular traffic by a GTP-binding protein on the cytoplasmic surface of secretory vesicles in yeast. Cold Spring Harb Symp Quant Biol. 1988;53(Pt 2):637–47.

    Article  CAS  PubMed  Google Scholar 

  • Opdam FJ, Echard A, Croes HJ, van den Hurk JA, van de Vorstenbosch RA, Ginsel LA, et al. The small GTPase Rab6B, a novel Rab6 subfamily member, is cell-type specifically expressed and localised to the Golgi apparatus. J Cell Sci. 2000;113(Pt 15):2725–35.

    CAS  PubMed  Google Scholar 

  • Otto TD, Wilinski D, Assefa S, Keane TM, Sarry LR, Bohme U, et al. New insights into the blood-stage transcriptome of Plasmodium falciparum using RNA-Seq. Mol Microbiol. 2010;76(1):12–24.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pfeffer SR. Rab GTPases: specifying and deciphering organelle identity and function. Trends Cell Biol. 2001;11(12):487–91.

    Article  CAS  PubMed  Google Scholar 

  • Polonais V, Javier Foth B, Chinthalapudi K, Marq JB, Manstein DJ, Soldati-Favre D, et al. Unusual anchor of a motor complex (MyoD-MLC2) to the plasma membrane of Toxoplasma gondii. Traffic. 2011;12(3):287–300.

    Article  CAS  PubMed  Google Scholar 

  • Quevillon E, Spielmann T, Brahimi K, Chattopadhyay D, Yeramian E, Langsley G. The Plasmodium falciparum family of Rab GTPases. Gene. 2003;306:13–25.

    Article  CAS  PubMed  Google Scholar 

  • Rached FB, Ndjembo-Ezougou C, Chandran S, Talabani H, Yera H, Dandavate V, et al. Construction of a Plasmodium falciparum Rab-interactome identifies CK1 and PKA as Rab-effector kinases in malaria parasites. Biol Cell. 2012;104(1):34–47.

    Article  PubMed Central  PubMed  Google Scholar 

  • Smythe WA, Joiner KA, Hoppe HC. Actin is required for endocytic trafficking in the malaria parasite Plasmodium falciparum. Cell Microbiol. 2008;10(2):452–64.

    CAS  PubMed  Google Scholar 

  • Solyakov L, Halbert J, Alam MM, Semblat JP, Dorin-Semblat D, Reininger L, et al. Global kinomic and phospho-proteomic analyses of the human malaria parasite Plasmodium falciparum. Nat Commun. 2011;2:565.

    Article  PubMed  Google Scholar 

  • Spielmann T, Gilberger TW. Protein export in malaria parasites: do multiple export motifs add up to multiple export pathways? Trends Parasitol. 2010;26(1):6–10.

    Article  CAS  PubMed  Google Scholar 

  • Stein MP, Cao C, Tessema M, Feng Y, Romero E, Welford A, et al. Interaction and functional analyses of human VPS34/p150 phosphatidylinositol 3-kinase complex with Rab7. Methods Enzymol. 2005;403:628–49.

    Article  CAS  PubMed  Google Scholar 

  • Stenmark H, Olkkonen VM. The Rab GTPase family. Genome Biol. 2001;2(5):REVIEWS3007.

    Google Scholar 

  • Tomlins AM, Ben-Rached F, Williams RA, Proto WR, Coppens I, Ruch U, Gilberger TW, Coombs GH, Mottram JC, Müller S, et al. Plasmodium falciparum ATG8 implicated in both autophagy and apicoplast formation. Autophagy. 2013;9:9–8.

    Article  Google Scholar 

  • Treeck M, Sanders JL, Elias JE, Boothroyd JC. The phosphoproteomes of Plasmodium falciparum and Toxoplasma gondii reveal unusual adaptations within and beyond the parasites’ boundaries. Cell Host Microbe. 2011;10(4):410–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ueda T, Yamaguchi M, Uchimiya H, Nakano A. Ara6, a plant-unique novel type Rab GTPase, functions in the endocytic pathway of Arabidopsis thaliana. EMBO J. 2001;20(17):4730–41.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vaid A, Ranjan R, Smythe WA, Hoppe HC, Sharma P. PfPI3K, a phosphatidylinositol-3 kinase from Plasmodium falciparum, is exported to the host erythrocyte and is involved in hemoglobin trafficking. Blood. 2010;115(12):2500–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang CW, Klionsky DJ. The molecular mechanism of autophagy. Mol Med. 2003;9(3–4):65–76.

    PubMed Central  PubMed  Google Scholar 

  • Ward GE, Tilney LG, Langsley G. Rab GTPases and the unusual secretory pathway of Plasmodium. Parasitol Today. 1997;13(2):57–62.

    Article  CAS  PubMed  Google Scholar 

  • Wright MH, Clough B, Rackham MD, Rangachari K, Brannigan JA, et al. (2013) Validation of N-myristoyltransferase as an antimalarial drug target using an integrated chemical biology approach. Nature Chemistry

    Google Scholar 

  • Zerial M, McBride H. Rab proteins as membrane organizers. Nat Rev Mol Cell Biol. 2001;2(2):107–17.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fathia Ben-Rached .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

Ben-Rached, F., Langley, G. (2013). Rab Proteins. In: Hommel, M., Kremsner, P. (eds) Encyclopedia of Malaria. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8757-9_36-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8757-9_36-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-8757-9

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics