Skip to main content

Protein Kinases and Phosphoproteome

  • Living reference work entry
  • First Online:
Encyclopedia of Malaria
  • 367 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Anamika A, Srinivasan N, et al. A genomic perspective of protein kinases in Plasmodium falciparum. Proteins. 2005;58(1):180–9.

    Article  CAS  PubMed  Google Scholar 

  • Bader GD, Hogue CW. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinform. 2003;4:2.

    Article  Google Scholar 

  • Ballif BA, Villen J, et al. Phosphoproteomic analysis of the developing mouse brain. Mol Cell Proteomics. 2004;3(11):1093–101.

    Article  CAS  PubMed  Google Scholar 

  • Chang EJ, Begum R, et al. Prediction of cyclin-dependent kinase phosphorylation substrates. PLoS One. 2007;2(7):e656.

    Article  PubMed Central  PubMed  Google Scholar 

  • Cohen P. Protein kinases–the major drug targets of the twenty-first century? Nat Rev Drug Discov. 2002;1(4):309–15.

    Article  CAS  PubMed  Google Scholar 

  • Cuny GD. Kinase inhibitors as potential therapeutics for acute and chronic neurodegenerative conditions. Curr Pharm Des. 2009;15(34):3919–39.

    Article  CAS  PubMed  Google Scholar 

  • Deshmukh K, Anamika K, et al. Evolution of domain combinations in protein kinases and its implications for functional diversity. Prog Biophys Mol Biol. 2010;102(1):1–15.

    Article  CAS  PubMed  Google Scholar 

  • Doerig C. Protein kinases as targets for anti-parasitic chemotherapy. Biochim Biophys Acta. 2004;1697(1–2):155–68.

    Article  CAS  PubMed  Google Scholar 

  • Doerig C, Billker O, et al. Protein kinases as targets for antimalarial intervention: kinomics, structure-based design, transmission-blockade, and targeting host cell enzymes. Biochim Biophys Acta. 2005;1754(1–2):132–50.

    Article  CAS  PubMed  Google Scholar 

  • Dorin D, Semblat JP, et al. PfPK7, an atypical MEK-related protein kinase, reflects the absence of classical three-component MAPK pathways in the human malaria parasite Plasmodium falciparum. Mol Microbiol. 2005;55(1):184–96.

    Article  CAS  PubMed  Google Scholar 

  • Dvorin JD, Martyn DC, et al. A plant-like kinase in Plasmodium falciparum regulates parasite egress from erythrocytes. Science. 2010;328(5980):910–2.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Eglen RM, Reisine T. The current status of drug discovery against the human kinome. Assay Drug Dev Technol. 2009;7(1):22–43.

    Article  CAS  PubMed  Google Scholar 

  • Fridman JS, Scherle PA, et al. Preclinical evaluation of local JAK1 and JAK2 inhibition in cutaneous inflammation. J Invest Dermatol. 2011;131(9):1838–44.

    Article  CAS  PubMed  Google Scholar 

  • Gardner MJ, Hall N, et al. Genome sequence of the human malaria parasite Plasmodium falciparum. Nature. 2002;419(6906):498–511.

    Article  CAS  PubMed  Google Scholar 

  • Gruhler A, Olsen JV, et al. Quantitative phosphoproteomics applied to the yeast pheromone signaling pathway. Mol Cell Proteomics. 2005;4(3):310–27.

    Article  CAS  PubMed  Google Scholar 

  • Gupta V, Gupta N, et al. Liposomal fasudil, a rho-kinase inhibitor, for prolonged pulmonary preferential vasodilation in pulmonary arterial hypertension. J Control Release. 2013;167(2):189–99.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hanks SK. Genomic analysis of the eukaryotic protein kinase superfamily: a perspective. Genome Biol. 2003;4(5):111.

    Article  PubMed Central  PubMed  Google Scholar 

  • Hanks SK, Hunter T. Protein kinases 6. The eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification. FASEB J. 1995;9(8):576–96.

    CAS  PubMed  Google Scholar 

  • Hanks SK, Quinn AM. Protein kinase catalytic domain sequence database: identification of conserved features of primary structure and classification of family members. Methods Enzymol. 1991;200:38–62.

    Article  CAS  PubMed  Google Scholar 

  • Hanks SK, Quinn AM, et al. The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science. 1988;241(4861):42–52.

    Article  CAS  PubMed  Google Scholar 

  • Holt LJ, Tuch BB, et al. Global analysis of Cdk1 substrate phosphorylation sites provides insights into evolution. Science. 2009;325(5948):1682–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Huang H, Li L, et al. Defining the specificity space of the human SRC homology 2 domain. Mol Cell Proteomics. 2008;7(4):768–84.

    Article  CAS  PubMed  Google Scholar 

  • Huttlin EL, Jedrychowski MP, et al. A tissue-specific atlas of mouse protein phosphorylation and expression. Cell. 2010;143(7):1174–89.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Joy SV, Scates AC, et al. Ruboxistaurin, a protein kinase C beta inhibitor, as an emerging treatment for diabetes microvascular complications. Ann Pharmacother. 2005;39(10):1693–9.

    Article  CAS  PubMed  Google Scholar 

  • Jung K, Fried L, et al. Histidine kinases and response regulators in networks. Curr Opin Microbiol. 2012;15(2):118–24.

    Article  CAS  PubMed  Google Scholar 

  • Kruger M, Moser M, et al. SILAC mouse for quantitative proteomics uncovers kindlin-3 as an essential factor for red blood cell function. Cell. 2008;134(2):353–64.

    Article  PubMed  Google Scholar 

  • Lasonder E, Green JL, et al. The Plasmodium falciparum schizont phosphoproteome reveals extensive phosphatidylinositol and cAMP-protein kinase A signaling. J Proteome Res. 2012a;11(11):5323–37.

    Article  CAS  PubMed  Google Scholar 

  • Lasonder E, Treeck M, et al. Insights into the Plasmodium falciparum schizont phospho-proteome. Microbes Infect. 2012b;14(10):811–9.

    Article  CAS  PubMed  Google Scholar 

  • Low H, Chua CS, et al. Plasmodium falciparum possesses a unique dual-specificity serine/threonine and tyrosine kinase, Pfnek3. Cell Mol Life Sci. 2012;69(9):1523–35.

    Article  CAS  PubMed  Google Scholar 

  • Lucet IS, Tobin A, et al. Plasmodium kinases as targets for new-generation antimalarials. Future Med Chem. 2012;4(18):2295–310.

    Article  CAS  PubMed  Google Scholar 

  • Macek B, Gnad F, et al. Phosphoproteome analysis of E. coli reveals evolutionary conservation of bacterial Ser/Thr/Tyr phosphorylation. Mol Cell Proteomics. 2008;7(2):299–307.

    Article  CAS  PubMed  Google Scholar 

  • Manning G, Plowman GD, et al. Evolution of protein kinase signaling from yeast to man. Trends Biochem Sci. 2002a;27(10):514–20.

    Article  CAS  PubMed  Google Scholar 

  • Manning G, Whyte DB, et al. The protein kinase complement of the human genome. Science. 2002b;298(5600):1912–34.

    Article  CAS  PubMed  Google Scholar 

  • Manning G, Young SL, et al. The protist, Monosiga brevicollis, has a tyrosine kinase signaling network more elaborate and diverse than found in any known metazoan. Proc Natl Acad Sci U S A. 2008;105(28):9674–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Manning G, Reiner DS, et al. The minimal kinome of Giardia lamblia illuminates early kinase evolution and unique parasite biology. Genome Biol. 2011;12(7):R66.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Miller ML, Jensen LJ, et al. Linear motif atlas for phosphorylation-dependent signaling. Sci Signal. 2008;1(35):ra2.

    Article  PubMed  Google Scholar 

  • Miranda-Saavedra D, Gabaldon T, et al. The kinomes of apicomplexan parasites. Microbes Infect. 2012;14(10):796–810.

    Article  CAS  PubMed  Google Scholar 

  • Nett IR, Martin DM, et al. The phosphoproteome of bloodstream form Trypanosoma brucei, causative agent of African sleeping sickness. Mol Cell Proteomics. 2009;8(7):1527–38.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Newman RH, Hu J, et al. Construction of human activity-based phosphorylation networks. Mol Syst Biol. 2013;9:655.

    Article  PubMed Central  PubMed  Google Scholar 

  • Olsen JV, Blagoev B, et al. Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell. 2006;127(3):635–48.

    Article  CAS  PubMed  Google Scholar 

  • Pease BN, Huttlin EL, et al. Global analysis of protein Expression and phosphorylation of three stages of Plasmodium falciparum intraerythrocytic development. J Proteome Res. 2013;12(9):4028–45.

    Article  CAS  PubMed  Google Scholar 

  • Reiland S, Messerli G, et al. Large-scale Arabidopsis phosphoproteome profiling reveals novel chloroplast kinase substrates and phosphorylation networks. Plant Physiol. 2009;150(2):889–903.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Reininger L, Wilkes JM, et al. An essential Aurora-related kinase transiently associates with spindle pole bodies during Plasmodium falciparum erythrocytic schizogony. Mol Microbiol. 2011;79(1):205–21.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rigbolt KT, Prokhorova TA, et al. System-wide temporal characterization of the proteome and phosphoproteome of human embryonic stem cell differentiation. Sci Signal. 2011;4(164):rs3.

    Article  PubMed  Google Scholar 

  • Schneider AG, Mercereau-Puijalon O. A new Apicomplexa-specific protein kinase family: multiple members in Plasmodium falciparum, all with an export signature. BMC Genomics. 2005;6:30.

    Article  PubMed Central  PubMed  Google Scholar 

  • Schwartz D, Gygi SP. An iterative statistical approach to the identification of protein phosphorylation motifs from large-scale data sets. Nat Biotechnol. 2005;23(11):1391–8.

    Article  CAS  PubMed  Google Scholar 

  • Solyakov L, Halbert J, et al. Global kinomic and phospho-proteomic analyses of the human malaria parasite Plasmodium falciparum. Nat Commun. 2011;2:565.

    Article  PubMed  Google Scholar 

  • Talevich E, Mirza A, et al. Structural and evolutionary divergence of eukaryotic protein kinases in Apicomplexa. BMC Evol Biol. 2011;11:321.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Talevich E, Tobin AB, et al. An evolutionary perspective on the kinome of malaria parasites. Philos Trans R Soc Lond B Biol Sci. 2012;367(1602):2607–18.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Taylor HM, McRobert L, et al. The malaria parasite cyclic GMP-dependent protein kinase plays a central role in blood-stage schizogony. Eukaryot Cell. 2010;9(1):37–45.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tewari R, Straschil U, et al. The systematic functional analysis of Plasmodium protein kinases identifies essential regulators of mosquito transmission. Cell Host Microbe. 2010;8(4):377–87.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Treeck M, Sanders JL, et al. The phosphoproteomes of Plasmodium falciparum and Toxoplasma gondii reveal unusual adaptations within and beyond the parasites’ boundaries. Cell Host Microbe. 2011;10(4):410–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ubersax JA, Ferrell Jr JE. Mechanisms of specificity in protein phosphorylation. Nat Rev Mol Cell Biol. 2007;8(7):530–41.

    Article  CAS  PubMed  Google Scholar 

  • Ward P, Equinet L, et al. Protein kinases of the human malaria parasite Plasmodium falciparum: the kinome of a divergent eukaryote. BMC Genomics. 2004;5(1):79.

    Article  PubMed Central  PubMed  Google Scholar 

  • Wu Y, Nelson MM, et al. Identification of phosphorylated proteins in erythrocytes infected by the human malaria parasite Plasmodium falciparum. Malar J. 2009;8:105.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang J, Yang PL, et al. Targeting cancer with small molecule kinase inhibitors. Nat Rev Cancer. 2009;9(1):28–39.

    Article  PubMed  Google Scholar 

  • Zhang VM, Chavchich M, et al. Targeting protein kinases in the malaria parasite: update of an antimalarial drug target. Curr Top Med Chem. 2012;12(5):456–72.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew B. Tobin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

Tobin, A.B., Doerig, C. (2013). Protein Kinases and Phosphoproteome. In: Hommel, M., Kremsner, P. (eds) Encyclopedia of Malaria. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8757-9_16-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8757-9_16-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-8757-9

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics