Skip to main content

Malaria Diagnostic Platform, PCR and RT-PCR

  • Living reference work entry
  • First Online:
Book cover Encyclopedia of Malaria
  • 225 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

BP:

Basepairs

cDNA:

Complementary DNA

CHMI:

Controlled human malaria infection

DBS:

Dried blood spots

DNA:

Deoxyribonucleic acid

dNTPs:

Deoxynucleotides

dsDNA:

Double-stranded DNA

FDA:

U.S. Food and Drug Administration

FRET:

Förster Resonance Energy Transfer

gDNA:

Genomic DNA

IBSM:

Induced blood-stage malaria

LAMP:

Loop mediated isothermal amplification

LoD:

Limit of detection

mRNA:

Messenger RNA

NASBA:

Nucleic acid sequence based amplification

nPCR:

Nested PCR

PCR:

Polymerase chain reaction

RNA:

Ribonucleic acid

rRNA:

Ribosomal RNA

RT-LAMP:

Reverse transcription LAMP

RT-PCR:

Reverse transcription polymerase chain reaction

ssDNA:

Single

TBS:

Thick blood smear

Tm :

Melting temperature

TMA:

Transcription mediated amplification

tRNA:

Transfer RNA

WHO:

World Health Organization

References

  • Abkallo HM, Liu W, Hokama S, Ferreira PE, Nakazawa S, Maeno Y, et al. DNA from pre-erythrocytic stage malaria parasites is detectable by PCR in the faeces and blood of hosts. Int J Parasitol. 2014;44(7):467–73.

    Article  CAS  PubMed  Google Scholar 

  • Andrews L, Andersen RF, Webster D, Dunachie S, Walther RM, Bejon P, et al. Quantitative real-time polymerase chain reaction for malaria diagnosis and its use in malaria vaccine clinical trials. Am J Trop Med Hyg. 2005;73(1):191–8.

    CAS  PubMed  Google Scholar 

  • Arai M, Mizukoshi C, Kubochi F, Kakutani T, Wataya Y. Detection of Plasmodium falciparum in human blood by a nested polymerase chain reaction. Am J Trop Med Hyg. 1994;51(5):617–26.

    Article  CAS  PubMed  Google Scholar 

  • Bejon P, Andrews L, Andersen RF, Dunachie S, Webster D, Walther M, et al. Calculation of liver-to-blood inocula, parasite growth rates, and preerythrocytic vaccine efficacy, from serial quantitative polymerase chain reaction studies of volunteers challenged with malaria sporozoites. J Infect Dis. 2005;191(4):619–26.

    Article  PubMed  Google Scholar 

  • Blossom DB, King CH, Armitage KB. Occult Plasmodium vivax infection diagnosed by a polymerase chain reaction-based detection system: a case report. Am J Trop Med Hyg. 2005;73(1):188–90.

    CAS  PubMed  Google Scholar 

  • Bousema T, Okell L, Felger I, Drakeley C. Asymptomatic malaria infections: detectability, transmissibility and public health relevance. Nat Rev Microbiol. 2014;12(12):833–40.

    Article  CAS  PubMed  Google Scholar 

  • Buppan P, Putaporntip C, Pattanawong U, Seethamchai S, Jongwutiwes S. Comparative detection of Plasmodium vivax and Plasmodium falciparum DNA in saliva and urine samples from symptomatic malaria patients in a low endemic area. Malar J. 2010;9:72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cattamanchi A, Kyabayinze D, Hubbard A, Rosenthal PJ, Dorsey G. Distinguishing recrudescence from reinfection in a longitudinal antimalarial drug efficacy study: comparison of results based on genotyping of msp-1, msp-2, and glurp. Am J Trop Med Hyg. 2003;68(2):133–9.

    CAS  PubMed  Google Scholar 

  • Cheng Q, Lawrence G, Reed C, Stowers A, Ranford-Cartwright L, Creasey A, et al. Measurement of Plasmodium falciparum growth rates in vivo: a test of malaria vaccines. Am J Trop Med Hyg. 1997;57(4):495–500.

    Article  CAS  PubMed  Google Scholar 

  • Cheng Q, Cunningham J, Gatton ML. Systematic review of sub-microscopic P. vivax infections: prevalence and determining factors. PLoS Negl Trop Dis. 2015;9(1):e3413.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ciceron L, Jaureguiberry G, Gay F, Danis M. Development of a Plasmodium PCR for monitoring efficacy of antimalarial treatment. J Clin Microbiol. 1999;37(1):35–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cnops L, Van Esbroeck M, Bottieau E, Jacobs J. Giemsa-stained thick blood films as a source of DNA for Plasmodium species-specific real-time PCR. Malar J. 2010;9:370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coleman RE, Sattabongkot J, Promstaporm S, Maneechai N, Tippayachai B, Kengluecha A, et al. Comparison of PCR and microscopy for the detection of asymptomatic malaria in a Plasmodium falciparum/vivax endemic area in Thailand. Malar J. 2006;5:121.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Daniels R, Ndiaye D, Wall M, McKinney J, Sene PD, Sabeti PC, et al. Rapid, field-deployable method for genotyping and discovery of single-nucleotide polymorphisms associated with drug resistance in Plasmodium falciparum. Antimicrob Agents Chemother. 2012;56(6):2976–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das A, Holloway B, Collins WE, Shama VP, Ghosh SK, Sinha S, et al. Species-specific 18S rRNA gene amplification for the detection of P. falciparum and P. vivax malaria parasites. Mol Cell Probes. 1995;9(3):161–5.

    Article  CAS  PubMed  Google Scholar 

  • Divis PC, Shokoples SE, Singh B, Yanow SK. A TaqMan real-time PCR assay for the detection and quantitation of Plasmodium knowlesi. Malar J. 2010;9:344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engwerda CR, Minigo G, Amante FH, McCarthy JS. Experimentally induced blood stage malaria infection as a tool for clinical research. Trends Parasitol. 2012;28(11):515–21.

    Article  PubMed  Google Scholar 

  • Epstein JE, Rao S, Williams F, Freilich D, Luke T, Sedegah M, et al. Safety and clinical outcome of experimental challenge of human volunteers with Plasmodium falciparum-infected mosquitoes: an update. J Infect Dis. 2007;196(1):145–54.

    Article  PubMed  Google Scholar 

  • Farrugia C, Cabaret O, Botterel F, Bories C, Foulet F, Costa JM, et al. Cytochrome b gene quantitative PCR for diagnosing Plasmodium falciparum infection in travelers. J Clin Microbiol. 2011;49(6):2191–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gal S, Fidler C, Turner S, Lo YM, Roberts DJ, Wainscoat JS. Detection of Plasmodium falciparum DNA in plasma. Ann N Y Acad Sci. 2001;945:234–8.

    Article  CAS  PubMed  Google Scholar 

  • Gardner MJ, Hall N, Fung E, White O, Berriman M, Hyman RW, et al. Genome sequence of the human malaria parasite Plasmodium falciparum. Nature. 2002;419(6906):498–511.

    Article  CAS  PubMed  Google Scholar 

  • Ghayour Najafabadi Z, Oormazdi H, Akhlaghi L, Meamar AR, Raeisi A, Rampisheh Z, et al. Mitochondrial PCR-based malaria detection in saliva and urine of symptomatic patients. Trans R Soc Trop Med Hyg. 2014;108(6):358–62.

    Article  CAS  PubMed  Google Scholar 

  • Gunderson JH, Sogin ML, Wollett G, Hollingdale M, de la Cruz VF, Waters AP, et al. Structurally distinct, stage-specific ribosomes occur in Plasmodium. Science. 1987;238(4829):933–7.

    Article  CAS  PubMed  Google Scholar 

  • Haanshuus CG, Mohn SC, Morch K, Langeland N, Blomberg B, Hanevik K. A novel, single-amplification PCR targeting mitochondrial genome highly sensitive and specific in diagnosing malaria among returned travellers in Bergen. Norway Malar J. 2013;12:26.

    Article  CAS  PubMed  Google Scholar 

  • Han ET, Watanabe R, Sattabongkot J, Khuntirat B, Sirichaisinthop J, Iriko H, et al. Detection of four Plasmodium species by genus- and species-specific loop-mediated isothermal amplification for clinical diagnosis. J Clin Microbiol. 2007;45(8):2521–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanron AE, Billman ZP, Seilie AM, Olsen TM, Fishbaugher M, Chang M, et al. Multiplex, DNase-free one-step reverse transcription PCR for Plasmodium 18S rRNA and spliced gametocyte-specific mRNAs. Malar J. 2017;16(1):208.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hanscheid T, Grobusch MP. How useful is PCR in the diagnosis of malaria? Trends Parasitol. 2002;18(9):395–8.

    Article  CAS  PubMed  Google Scholar 

  • Hermsen CC, de Vlas SJ, van Gemert GJ, Telgt DS, Verhage DF, Sauerwein RW. Testing vaccines in human experimental malaria: statistical analysis of parasitemia measured by a quantitative real-time polymerase chain reaction. Am J Trop Med Hyg. 2004;71(2):196–201.

    CAS  PubMed  Google Scholar 

  • Higuchi R, Fockler C, Dollinger G, Watson R. Kinetic PCR analysis: real-time monitoring of DNA amplification reactions. Biotechnology (N Y). 1993;11(9):1026–30.

    CAS  Google Scholar 

  • Hodgson SH, Douglas AD, Edwards NJ, Kimani D, Elias SC, Chang M, et al. Increased sample volume and use of quantitative reverse-transcription PCR can improve prediction of liver-to-blood inoculum size in controlled human malaria infection studies. Malar J. 2015;14:33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hofmann N, Mwingira F, Shekalaghe S, Robinson LJ, Mueller I, Felger I. Ultra-sensitive detection of Plasmodium falciparum by amplification of multi-copy subtelomeric targets. PLoS Med. 2015;12(3):e1001788.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hsiang MS, Lin M, Dokomajilar C, Kemere J, Pilcher CD, Dorsey G, et al. PCR-based pooling of dried blood spots for detection of malaria parasites: optimization and application to a cohort of Ugandan children. J Clin Microbiol. 2010;48(10):3539–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hwang J, Jaroensuk J, Leimanis ML, Russell B, McGready R, Day N, et al. Long-term storage limits PCR-based analyses of malaria parasites in archival dried blood spots. Malar J. 2012;11:339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imwong M, Hanchana S, Malleret B, Renia L, Day NP, Dondorp A, et al. High-throughput ultrasensitive molecular techniques for quantifying low-density malaria parasitemias. J Clin Microbiol. 2014;52(9):3303–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imwong M, Woodrow CJ, Hendriksen IC, Veenemans J, Verhoef H, Faiz MA, et al. Plasma concentration of parasite DNA as a measure of disease severity in falciparum malaria. J Infect Dis. 2015;211(7):1128–33.

    Article  PubMed  Google Scholar 

  • Jaureguiberry G, Hatin I, d'Auriol L, Galibert G. PCR detection of Plasmodium falciparum by oligonucleotide probes. Mol Cell Probes. 1990;4(5):409–14.

    Article  CAS  PubMed  Google Scholar 

  • Jirku M, Pomajbikova K, Petrzelkova KJ, Huzova Z, Modry D, Lukes J. Detection of Plasmodium spp. in human feces. Emerg Infect Dis. 2012;18(4):634–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joice R, Narasimhan V, Montgomery J, Sidhu AB, Oh K, Meyer E, et al. Inferring developmental stage composition from gene expression in human malaria. PLoS Comput Biol. 2013;9(12):e1003392.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Juliano JJ, Taylor SM, Meshnick SR. PCR-adjustment in Antimalarial Trials – Molecular malarkey? J Infect Dis. 2009;200(1):5–7.

    Article  PubMed  PubMed Central  Google Scholar 

  • Juliano JJ, Gadalla N, Sutherland CJ, Meshnick SR. The perils of PCR: can we accurately “correct” antimalarial trials? Trends Parasitol. 2010;26(3):119–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawai S, Sato M, Kato-Hayashi N, Kishi H, Huffman MA, Maeno Y, et al. Detection of Plasmodium knowlesi DNA in the urine and faeces of a Japanese macaque (Macaca fuscata) over the course of an experimentally induced infection. Malar J. 2014;13:373.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Keita AK, Fenollar F, Socolovschi C, Ratmanov P, Bassene H, Sokhna C, et al. The detection of vector-borne-disease-related DNA in human stool paves the way to large epidemiological studies. Eur J Epidemiol. 2015;30(9):1021–6.

    Article  PubMed  Google Scholar 

  • Kho WG, Chung JY, Sim EJ, Kim MY, Kim DW, Jongwutiwes S, et al. A multiplex polymerase chain reaction for a differential diagnosis of Plasmodium falciparum and Plasmodium vivax. Parasitol Int. 2003;52(3):229–36.

    Article  CAS  PubMed  Google Scholar 

  • Kuamsab N, Putaporntip C, Pattanawong U, Jongwutiwes S. Simultaneous detection of Plasmodium vivax and Plasmodium falciparum gametocytes in clinical isolates by multiplex-nested RT-PCR. Malar J. 2012;11:190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lal AA, Changkasiri S, Hollingdale MR, McCutchan TF. Ribosomal RNA-based diagnosis of Plasmodium falciparum malaria. Mol Biochem Parasitol. 1989;36(1):67–71.

    Article  CAS  PubMed  Google Scholar 

  • Lamikanra AA, Dobano C, Jimenez A, Nhabomba A, Tsang HP, Guinovart C, et al. A direct comparison of real time PCR on plasma and blood to detect Plasmodium falciparum infection in children. Malar J. 2012;11:201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lawaly YR, Sakuntabhai A, Marrama L, Konate L, Phimpraphi W, Sokhna C, et al. Heritability of the human infectious reservoir of malaria parasites. PLoS One. 2010;5(6):e11358.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li J, McConkey GA, Rogers MJ, Waters AP, McCutchan TR. Plasmodium: the developmentally regulated ribosome. Exp Parasitol. 1994;78(4):437–41.

    Article  CAS  PubMed  Google Scholar 

  • Li J, Wirtz RA, McCutchan TF. Analysis of malaria parasite RNA from decade-old Giemsa-stained blood smears and dried mosquitoes. Am J Trop Med Hyg. 1997;57(6):727–31.

    Article  CAS  PubMed  Google Scholar 

  • Lima NF, Bastos MS, Ferreira MU. Plasmodium vivax: reverse transcriptase real-time PCR for gametocyte detection and quantitation in clinical samples. Exp Parasitol. 2012;132(3):348–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Link L, Bart A, Verhaar N, van Gool T, Pronk M, Scharnhorst V. Molecular detection of Plasmodium knowlesi in a Dutch traveler by real-time PCR. J Clin Microbiol. 2012;50(7):2523–4.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lucchi NW, Karell MA, Journel I, Rogier E, Goldman I, Ljolje D, et al. PET-PCR method for the molecular detection of malaria parasites in a national malaria surveillance study in Haiti, 2011. Malar J. 2014;13:462.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lundeberg J, Wahlberg J, Holmberg M, Pettersson U, Uhlen M. Rapid colorimetric detection of in vitro amplified DNA sequences. DNA Cell Biol. 1990;9(4):287–92.

    Article  CAS  PubMed  Google Scholar 

  • Lv YH, Ma KJ, Zhang H, He M, Zhang P, Shen YW, et al. A time course study demonstrating mRNA, microRNA, 18S rRNA, and U6 snRNA changes to estimate PMI in deceased rat's spleen. J Forensic Sci. 2014;59(5):1286–94.

    Article  CAS  PubMed  Google Scholar 

  • Mangold KA, Manson RU, Koay ES, Stephens L, Regner M, Thomson Jr RB, et al. Real-time PCR for detection and identification of Plasmodium spp. J Clin Microbiol. 2005;43(5):2435–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marx V. PCR heads into the field. Nat Methods. 2015;12(5):393–7.

    Article  CAS  PubMed  Google Scholar 

  • McCutchan TF, de la Cruz VF, Lal AA, Gunderson JH, Elwood HJ, Sogin ML. Primary sequences of two small subunit ribosomal RNA genes from Plasmodium falciparum. Mol Biochem Parasitol. 1988;28(1):63–8.

    Article  CAS  PubMed  Google Scholar 

  • Mens PF, Schoone GJ, Kager PA, Schallig HD. Detection and identification of human Plasmodium species with real-time quantitative nucleic acid sequence-based amplification. Malar J. 2006;5:80.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mharakurwa S, Simoloka C, Thuma PE, Shiff CJ, Sullivan DJ. PCR detection of Plasmodium falciparum in human urine and saliva samples. Malar J. 2006;5:103.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mixson-Hayden T, Lucchi NW, Udhayakumar V. Evaluation of three PCR-based diagnostic assays for detecting mixed Plasmodium infection. BMC Res Notes. 2010;3:88.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Montenegro LM, Montenegro RA, Lima AS, Carvalho AB, Schindler HC, Abath FG. Development of a single tube hemi-nested PCR for genus-specific detection of Plasmodium in oligoparasitemic patients. Trans R Soc Trop Med Hyg. 2004;98(10):619–25.

    Article  CAS  PubMed  Google Scholar 

  • Mullis KB, Faloona FA. Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol. 1987;155:335–50.

    Article  CAS  PubMed  Google Scholar 

  • Murphy SC, Daza G, Chang M, Coombs R. Laser cutting eliminates nucleic acid cross-contamination in dried blood spot processing. J Clin Microbiol. 2012a;50(12):4128–30.

    Article  PubMed  PubMed Central  Google Scholar 

  • Murphy SC, Prentice JL, Williamson K, Wallis CK, Fang FC, Fried M, et al. Real-time quantitative reverse transcription PCR for monitoring of blood-stage Plasmodium falciparum infections in malaria human challenge trials. Am J Trop Med Hyg. 2012b;86(3):383–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murphy SC, Hermsen CC, Douglas AD, Edwards N, Petersen I, Fahle G, et al. External quality assurance of malaria nucleic acid testing for clinical trials and eradication surveillance. PLoS One. 2014;9(5):e97398.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Oguike MC, Betson M, Burke M, Nolder D, Stothard JR, Kleinschmidt I, et al. Plasmodium ovale curtisi and Plasmodium ovale wallikeri circulate simultaneously in African communities. Int J Parasitol. 2011;41(6):677–83.

    Article  PubMed  PubMed Central  Google Scholar 

  • Okell LC, Ghani AC, Lyons E, Drakeley CJ. Submicroscopic infection in Plasmodium falciparum-endemic populations: a systematic review and meta-analysis. J Infect Dis. 2009;200(10):1509–17.

    Article  PubMed  Google Scholar 

  • Oyedeji SI, Awobode HO, Monday GC, Kendjo E, Kremsner PG, Kun JF. Comparison of PCR-based detection of Plasmodium falciparum infections based on single and multicopy genes. Malar J. 2007;6:112.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pakalapati D, Garg S, Middha S, Acharya J, Subudhi AK, Boopathi AP, et al. Development and evaluation of a 28S rRNA gene-based nested PCR assay for P. falciparum and P. vivax. Pathog Glob Health. 2013;107(4):180–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perandin F, Manca N, Calderaro A, Piccolo G, Galati L, Ricci L, et al. Development of a real-time PCR assay for detection of Plasmodium falciparum, Plasmodium vivax, and Plasmodium ovale for routine clinical diagnosis. J Clin Microbiol. 2004;42(3):1214–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pett H, Goncalves BP, Dicko A, Nebie I, Tiono AB, Lanke K, et al. Comparison of molecular quantification of Plasmodium falciparum gametocytes by Pfs25 qRT-PCR and QT-NASBA in relation to mosquito infectivity. Malar J. 2016;15(1):539.

    Article  PubMed  PubMed Central  Google Scholar 

  • Polley SD, Mori Y, Watson J, Perkins MD, Gonzalez IJ, Notomi T, et al. Mitochondrial DNA targets increase sensitivity of malaria detection using loop-mediated isothermal amplification. J Clin Microbiol. 2010;48(8):2866–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Polley SD, Bell D, Oliver J, Tully F, Perkins MD, Chiodini PL, et al. The design and evaluation of a shaped filter collection device to sample and store defined volume dried blood spots from finger pricks. Malar J. 2015;14:45.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pritsch M, Wieser A, Soederstroem V, Poluda D, Eshetu T, Hoelscher M, et al. Stability of gametocyte-specific Pfs25-mRNA in dried blood spots on filter paper subjected to different storage conditions. Malar J. 2012;11(1):138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Procop GW. Molecular diagnostics for the detection and characterization of microbial pathogens. Clin Infect Dis. 2007;45(Suppl 2):S99–S111.

    Article  CAS  PubMed  Google Scholar 

  • Putaporntip C, Buppan P, Jongwutiwes S. Improved performance with saliva and urine as alternative DNA sources for malaria diagnosis by mitochondrial DNA-based PCR assays. Clin Microbiol Infect. 2011;17(10):1484–91.

    Article  CAS  PubMed  Google Scholar 

  • Robinson T, Campino SG, Auburn S, Assefa SA, Polley SD, Manske M, et al. Drug-resistant genotypes and multi-clonality in Plasmodium falciparum analysed by direct genome sequencing from peripheral blood of malaria patients. PLoS One. 2011;6(8):e23204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roth JM, Korevaar DA, Leeflang MM, Mens PF. Molecular malaria diagnostics: a systematic review and meta-analysis. Crit Rev Clin Lab Sci. 2016;53(2):87–105.

    Article  CAS  PubMed  Google Scholar 

  • Rougemont M, Van Saanen M, Sahli R, Hinrikson HP, Bille J, Jaton K. Detection of four Plasmodium species in blood from humans by 18S rRNA gene subunit-based and species-specific real-time PCR assays. J Clin Microbiol. 2004;42(12):5636–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Safeukui I, Millet P, Boucher S, Melinard L, Fregeville F, Receveur MC, et al. Evaluation of FRET real-time PCR assay for rapid detection and differentiation of Plasmodium species in returning travellers and migrants. Malar J. 2008;7:70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Saiki RK, Scharf S, Faloona F, Mullis KB, Horn GT, Erlich HA, et al. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science. 1985;230(4732):1350–4.

    Article  CAS  PubMed  Google Scholar 

  • Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, et al. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science. 1988;239(4839):487–91.

    Article  CAS  PubMed  Google Scholar 

  • Sanderson F, Andrews L, Douglas AD, Hunt-Cooke A, Bejon P, Hill AV. Blood-stage challenge for malaria vaccine efficacy trials: a pilot study with discussion of safety and potential value. Am J Trop Med Hyg. 2008;78(6):878–83.

    PubMed  Google Scholar 

  • Sauerwein RW, Roestenberg M, Moorthy VS. Experimental human challenge infections can accelerate clinical malaria vaccine development. Nat Rev Immunol. 2011;11(1):57–64.

    Article  CAS  PubMed  Google Scholar 

  • Schneider P, Wolters L, Schoone G, Schallig H, Sillekens P, Hermsen R, et al. Real-time nucleic acid sequence-based amplification is more convenient than real-time PCR for quantification of Plasmodium falciparum. J Clin Microbiol. 2005;43(1):402–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schoone GJ, Oskam L, Kroon NC, Schallig HD, Omar SA. Detection and quantification of Plasmodium falciparum in blood samples using quantitative nucleic acid sequence-based amplification. J Clin Microbiol. 2000;38(11):4072–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schriefer ME, Sacci Jr JB, Wirtz RA, Azad AF. Detection of polymerase chain reaction-amplified malarial DNA in infected blood and individual mosquitoes. Exp Parasitol. 1991;73(3):311–6.

    Article  CAS  PubMed  Google Scholar 

  • Schwartz A, Baidjoe A, Rosenthal PJ, Dorsey G, Bousema T, Greenhouse B. The effect of storage and extraction methods on amplification of Plasmodium falciparum DNA from dried blood spots. Am J Trop Med Hyg. 2015;92(5):922–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scopel KK, Fontes CJ, Nunes AC, Horta MF, Braga EM. Low sensitivity of nested PCR using Plasmodium DNA extracted from stained thick blood smears: an epidemiological retrospective study among subjects with low parasitaemia in an endemic area of the Brazilian Amazon region. Malar J. 2004;3:8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Seed CR, Kitchen A, Davis TM. The current status and potential role of laboratory testing to prevent transfusion-transmitted malaria. Transfus Med Rev. 2005;19(3):229–40.

    Article  PubMed  Google Scholar 

  • Singh B, Cox-Singh J, Miller AO, Abdullah MS, Snounou G, Rahman HA. Detection of malaria in Malaysia by nested polymerase chain reaction amplification of dried blood spots on filter papers. Trans R Soc Trop Med Hyg. 1996;90(5):519–21.

    Article  CAS  PubMed  Google Scholar 

  • Singh B, Bobogare A, Cox-Singh J, Snounou G, Abdullah MS, Rahman HA. A genus- and species-specific nested polymerase chain reaction malaria detection assay for epidemiologic studies. Am J Trop Med Hyg. 1999;60(4):687–92.

    Article  CAS  PubMed  Google Scholar 

  • Singh B, Kim Sung L, Matusop A, Radhakrishnan A, Shamsul SS, Cox-Singh J, et al. A large focus of naturally acquired Plasmodium knowlesi infections in human beings. Lancet. 2004;363(9414):1017–24.

    Article  PubMed  Google Scholar 

  • Snounou G. Genotyping of Plasmodium spp. Nested PCR. Methods Mol Med. 2002;72:103–16.

    CAS  PubMed  Google Scholar 

  • Snounou G, Singh B. Nested PCR analysis of Plasmodium parasites. Methods Mol Med. 2002;72:189–203.

    CAS  PubMed  Google Scholar 

  • Snounou G, Viriyakosol S, Jarra W, Thaithong S, Brown KN. Identification of the four human malaria parasite species in field samples by the polymerase chain reaction and detection of a high prevalence of mixed infections. Mol Biochem Parasitol. 1993a;58(2):283–92.

    Article  CAS  PubMed  Google Scholar 

  • Snounou G, Viriyakosol S, Zhu XP, Jarra W, Pinheiro L, do Rosario VE, et al. High sensitivity of detection of human malaria parasites by the use of nested polymerase chain reaction. Mol Biochem Parasitol. 1993b;61(2):315–20.

    Article  CAS  PubMed  Google Scholar 

  • Steenkeste N, Incardona S, Chy S, Duval L, Ekala MT, Lim P, et al. Towards high-throughput molecular detection of Plasmodium: new approaches and molecular markers. Malar J. 2009;8:86.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Strom GE, Moyo S, Fataki M, Langeland N, Blomberg B. PCR targeting Plasmodium mitochondrial genome of DNA extracted from dried blood on filter paper compared to whole blood. Malar J. 2014;13:137.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sutherland CJ, Tanomsing N, Nolder D, Oguike M, Jennison C, Pukrittayakamee S, et al. Two nonrecombining sympatric forms of the human malaria parasite Plasmodium ovale occur globally. J Infect Dis. 2010;201(10):1544–50.

    Article  CAS  PubMed  Google Scholar 

  • Swan H, Sloan L, Muyombwe A, Chavalitshewinkoon-Petmitr P, Krudsood S, Leowattana W, et al. Evaluation of a real-time polymerase chain reaction assay for the diagnosis of malaria in patients from Thailand. Am J Trop Med Hyg. 2005;73(5):850–4.

    CAS  PubMed  Google Scholar 

  • Ta TT, Salas A, Ali-Tammam M, Martinez Mdel C, Lanza M, Arroyo E, et al. First case of detection of Plasmodium knowlesi in Spain by Real Time PCR in a traveller from Southeast Asia. Malar J. 2010;9:219.

    Article  PubMed  Google Scholar 

  • Talley AK, Healy SA, Finney OC, Murphy SC, Kublin J, Salas CJ, et al. Safety and comparability of controlled human Plasmodium falciparum infection by mosquito bite in malaria-naive subjects at a new facility for sporozoite challenge. PLoS One. 2014;9(11):e109654.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tan TM, Nelson JS, Ng HC, Ting RC, Kara UA. Direct PCR amplification and sequence analysis of extrachromosomal Plasmodium DNA from dried blood spots. Acta Trop. 1997;68(1):105–14.

    Article  CAS  PubMed  Google Scholar 

  • Tangin A, Komichi Y, Wagatsuma Y, Rashidul H, Wataya Y, Kim HS. Detection of malaria parasites in mosquitoes from the malaria-endemic area of Chakaria, Bangladesh. Biol Pharm Bull. 2008;31(4):703–8.

    Article  CAS  PubMed  Google Scholar 

  • Tanomsing N, Imwong M, Theppabutr S, Pukrittayakamee S, Day NP, White NJ, et al. Accurate and sensitive detection of Plasmodium species in humans by use of the dihydrofolate reductase-thymidylate synthase linker region. J Clin Microbiol. 2010;48(10):3735–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor BJ, Howell A, Martin KA, Manage DP, Gordy W, Campbell SD, et al. A lab-on-chip for malaria diagnosis and surveillance. Malar J. 2014;13:179.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tirasophon W, Ponglikitmongkol M, Wilairat P, Boonsaeng V, Panyim S. A novel detection of a single Plasmodium falciparum in infected blood. Biochem Biophys Res Commun. 1991;175(1):179–84.

    Article  CAS  PubMed  Google Scholar 

  • Tran TM, Aghili A, Li S, Ongoiba A, Kayentao K, Doumbo S, et al. A nested real-time PCR assay for the quantification of Plasmodium falciparum DNA extracted from dried blood spots. Malar J. 2014;13:393.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vo TK, Bigot P, Gazin P, Sinou V, De Pina JJ, Huynh DC, et al. Evaluation of a real-time PCR assay for malaria diagnosis in patients from Vietnam and in returned travellers. Trans R Soc Trop Med Hyg. 2007;101(5):422–8.

    Article  CAS  PubMed  Google Scholar 

  • Wahlberg J, Lundeberg J, Hultman T, Holmberg M, Uhlen M. Rapid detection and sequencing of specific in vitro amplified DNA sequences using solid phase methods. Mol Cell Probes. 1990;4(4):285–97.

    Article  CAS  PubMed  Google Scholar 

  • Wampfler R, Mwingira F, Javati S, Robinson L, Betuela I, Siba P, et al. Strategies for detection of Plasmodium species gametocytes. PLoS One. 2013;8(9):e76316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wargo AR, Randle N, Chan BH, Thompson J, Read AF, Babiker HA. Plasmodium chabaudi: reverse transcription PCR for the detection and quantification of transmission stage malaria parasites. Exp Parasitol. 2006;112(1):13–20.

    Article  CAS  PubMed  Google Scholar 

  • Wataya Y, Kubochi F, Mizukoshi C, Ohya Y, Watanabe K, Arai M, et al. DNA diagnosis of falciparum malaria. Nucleic Acids Symp Ser. 1991;25:155–6.

    CAS  Google Scholar 

  • Waters AP, McCutchan TF. Rapid, sensitive diagnosis of malaria based on ribosomal RNA. Lancet. 1989;1(8651):1343–6.

    Article  CAS  PubMed  Google Scholar 

  • Waters AP, Syin C, McCutchan TF. Developmental regulation of stage-specific ribosome populations in Plasmodium. Nature. 1989;342(6248):438–40.

    Article  CAS  PubMed  Google Scholar 

  • Wellems TE, Walliker D, Smith CL, do Rosario VE, Maloy WL, Howard RJ, et al. A histidine-rich protein gene marks a linkage group favored strongly in a genetic cross of Plasmodium falciparum. Cell. 1987;49(5):633–42.

    Article  CAS  PubMed  Google Scholar 

  • Westgard JO, Barry PL, Hunt MR, Groth T. A multi-rule Shewhart chart for quality control in clinical chemistry. Clin Chem. 1981;27(3):493–501.

    CAS  PubMed  Google Scholar 

  • WHO. A WHO external quality assurance scheme for malaria nucleic acid amplification testing. In: Programme GM, editor. Meeting report. Geneva: WHO; 2015.

    Google Scholar 

  • Wihokhoen B, Dondorp AM, Turner P, Woodrow CJ, Imwong M. Use of blood smears and dried blood spots for polymerase chain reaction-based detection and quantification of bacterial infection and Plasmodium falciparum in severely ill febrile African children. Am J Trop Med Hyg. 2016;94(2):322–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson PE, Alker AP, Meshnick SR. Real-time PCR methods for monitoring antimalarial drug resistance. Trends Parasitol. 2005;21(6):278–83.

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Jiang W, Ping Y, Bi G, Chen LK, Zhou HG. Determination of bloodstain formation time by RNA analysis. Fa Yi Xue Za Zhi. 2010;26(5):340–2.

    CAS  PubMed  Google Scholar 

  • Zhong KJ, Kain KC. Evaluation of a colorimetric PCR-based assay to diagnose Plasmodium falciparum malaria in travelers. J Clin Microbiol. 1999;37(2):339–41.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sean C. Murphy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this entry

Cite this entry

Murphy, S.C. (2017). Malaria Diagnostic Platform, PCR and RT-PCR. In: Kremsner, P., Krishna, S. (eds) Encyclopedia of Malaria. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8757-9_108-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8757-9_108-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8757-9

  • Online ISBN: 978-1-4614-8757-9

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics