Skip to main content

Anemia of the Critically Ill Patient: Pathophysiology, Lessons from Animal Models

  • Living reference work entry
  • First Online:
Diet and Nutrition in Critical Care

Abstract

Critically ill patients have a high prevalence of anemia. Some of them are already anemic at intensive care unit (ICU) admission, because of surgery, trauma, or their medical history; and around 80 % of them are anemic at ICU discharge. The mechanisms underlying this anemia are multiple and often entangled. Two main mechanisms are involved: inflammation and blood losses. Inflammation is a major contributor to this anemia, with similarities with “anemia of inflammation” or “anemia of chronic disease,” by impairing bone marrow erythropoiesis, repressing erythropoietin synthesis, and decreasing red blood cell life span. Blood losses are important during ICU hospitalization, due to invasive procedures (drainage, catheterizations, dialysis), occult bleedings (gastrointestinal), and repeated blood samplings. These blood losses are directly responsible for hemoglobin loss but also for iron losses. The resulting iron deficiency slows erythropoiesis and contributes to worsen the anemia. Interestingly, inflammation interacts with iron metabolism too. Indeed, proinflammatory cytokines (notably IL-6) induce hepcidin synthesis, the master regulator of iron metabolism, which prevents the release of iron from store cells (macrophages and duodenal cells). The resulting hypoferremia due to the repressed iron mobilization from stores is called “functional iron deficiency.” Different animal models have been used to explore all these mechanisms. These models involve mainly rodents (mice and rats) and helped to better describe the link between inflammation and erythropoiesis, and the interaction between inflammation, iron deficiency, and iron metabolism. However, new animal or human studies are needed to improve our knowledge on the pathophysiology of this anemia and to evaluate therapeutic targets such as hepcidin modifications or iron treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

BFU-E:

Burst-forming units erythroid

CFU-E:

Colony-forming units erythroid

CFU-GEMM:

Colony-forming units granulocyte erythroid monocyte megacaryocyte

EPO:

Erythropoietin

EPOR:

Erythropoietin receptor

EPOR+:

Cells with erythropoietin receptor

Hb:

Hemoglobin

ICU:

Intensive care units

ID:

Iron deficiency

IFN-γ:

Interferon-γ

IL-1:

Interleukin-1

IL-6:

Interleukin-6

LPS:

Lipopolysaccharide

SCF:

Stem cell factor

TNF-α:

Tumor necrosis factor-α

ZIGI:

Zymosan-induced generalized inflammation

References

  • Alazia M, Colavolpe JC, Botti G, Corda N, Ramero C, Francois G. Blood loss from diagnostic laboratory tests performed in intensive care units. Preliminary study. Ann Fr Anesth Reanim. 1996;15:1004–7.

    Article  CAS  PubMed  Google Scholar 

  • Anosa VO. Postsplenectomy blood values, marrow cytology, erythrocyte life-span, and sequestration in mice. Am J Physiol. 1976;231:1254–7.

    CAS  PubMed  Google Scholar 

  • Bateman AP, McArdle F, Walsh TS. Time course of anemia during six months follow up following intensive care discharge and factors associated with impaired recovery of erythropoiesis. Crit Care Med. 2009;37:1906–12.

    Article  PubMed  Google Scholar 

  • Beaumont C, Canonne-Hergaux F. Erythrophagocytosis and recycling of heme iron in normal and pathological conditions; regulation by hepcidin. Transfus Clin Biol. 2005;12:123–30.

    Article  CAS  PubMed  Google Scholar 

  • Burnum JF. Medical vampires. N Engl J Med. 1986;314:1250–1.

    Article  CAS  PubMed  Google Scholar 

  • Byrd TF, Horwitz MA. Regulation of transferrin receptor expression and ferritin content in human mononuclear phagocytes. Coordinate upregulation by iron transferrin and downregulation by interferon gamma. J Clin Invest. 1993;91:969–76.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Camaschella C, Pagani A. Iron and erythropoiesis: a dual relationship. Int J Hematol. 2010;93:21–6.

    Article  PubMed  Google Scholar 

  • Cazzola M, Ponchio L, de Benedetti F, Ravelli A, Rosti V, Beguin Y, et al. Defective iron supply for erythropoiesis and adequate endogenous erythropoietin production in the anemia associated with systemic-onset juvenile chronic arthritis. Blood. 1996;87:4824–30.

    CAS  PubMed  Google Scholar 

  • Cimen MY. Free radical metabolism in human erythrocytes. Clin Chim Acta. 2008;390:1–11.

    Article  CAS  PubMed  Google Scholar 

  • Claessens YE, Fontenay M, Pene F, Chiche JD, Guesnu M, Hababou C, et al. Erythropoiesis abnormalities contribute to early-onset anemia in patients with septic shock. Am J Respir Crit Care Med. 2006;174:51–7.

    Article  CAS  PubMed  Google Scholar 

  • Corwin HL, Krantz SB. Anemia of the critically ill: “acute” anemia of chronic disease. Crit Care Med. 2000;28:3098–9.

    Article  CAS  PubMed  Google Scholar 

  • Dellinger RP, Levy MM, Rhodes A, Annane D, Gerlach H, Opal SM, et al. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2012. Crit Care Med. 2013;41:580–637.

    Article  PubMed  Google Scholar 

  • Faquin WC, Schneider TJ, Goldberg MA. Effect of inflammatory cytokines on hypoxia-induced erythropoietin production. Blood. 1992;79:1987–94.

    CAS  PubMed  Google Scholar 

  • Fleming MD, Trenor 3rd CC, Su MA, Foernzler D, Beier DR, Dietrich WF, et al. Microcytic anaemia mice have a mutation in Nramp2, a candidate iron transporter gene. Nat Genet. 1997;16:383–6.

    CAS  PubMed  Google Scholar 

  • Frede S, Fandrey J, Pagel H, Hellwig T, Jelkmann W. Erythropoietin gene expression is suppressed after lipopolysaccharide or interleukin-1 beta injections in rats. Am J Physiol. 1997;273:R1067–71.

    CAS  PubMed  Google Scholar 

  • Ganz T. Hepcidin, a key regulator of iron metabolism and mediator of anemia of inflammation. Blood. 2003;102:783–8.

    Article  CAS  PubMed  Google Scholar 

  • Ganz T, Nemeth E. Hepcidin and disorders of iron metabolism. Annu Rev Med. 2011;62:347–60.

    Article  CAS  PubMed  Google Scholar 

  • Hebert PC, Wells G, Blajchman MA, Marshall J, Martin C, Pagliarello G, et al. A multicenter, randomized, controlled clinical trial of transfusion requirements in critical care. Transfusion Requirements in Critical Care Investigators, Canadian Critical Care Trials Group. N Engl J Med. 1999;340:409–17.

    Article  CAS  PubMed  Google Scholar 

  • Heming N, Montravers P, Lasocki S. Iron deficiency in critically ill patients: highlighting the role of hepcidin. Crit Care. 2011;15:210.

    Article  PubMed Central  PubMed  Google Scholar 

  • Heming N, Letteron P, Driss F, Millot S, El Benna J, Tourret J, et al. Efficacy and toxicity of intravenous iron in a mouse model of critical care anemia*. Crit Care Med. 2012;40:2141–8.

    Article  CAS  PubMed  Google Scholar 

  • Jelkmann W. Proinflammatory cytokines lowering erythropoietin production. J Interferon Cytokine Res. 1998;18:555–9.

    Article  CAS  PubMed  Google Scholar 

  • Kemna E, Pickkers P, Nemeth E, van der Hoeven H, Swinkels D. Time-course analysis of hepcidin, serum iron, and plasma cytokine levels in humans injected with LPS. Blood. 2005a;106:1864–6.

    Article  CAS  PubMed  Google Scholar 

  • Kemna E, Tjalsma H, Laarakkers C, Nemeth E, Willems H, Swinkels D. Novel urine hepcidin assay by mass spectrometry. Blood. 2005b;106:3268–70.

    Article  CAS  PubMed  Google Scholar 

  • Kim A, Fung E, Parikh SG, Valore EV, Gabayan V, Nemeth E, et al. A mouse model of anemia of inflammation: complex pathogenesis with partial dependence on hepcidin. Blood. 2014;123: 1129–1136.

    Google Scholar 

  • Lasocki S, Millot S, Andrieu V, Letteron P, Pilard N, Muzeau F, et al. Phlebotomies or erythropoietin injections allow mobilization of iron stores in a mouse model mimicking intensive care anemia. Crit Care Med. 2008;36:2388–94.

    Article  CAS  PubMed  Google Scholar 

  • Lasocki S, Baron G, Driss F, Westerman M, Puy H, Boutron I, et al. Diagnostic accuracy of serum hepcidin for iron deficiency in critically ill patients with anemia. Intensive Care Med. 2010;36:1044–8.

    Article  CAS  PubMed  Google Scholar 

  • Lasocki S, Longrois D, Montravers P, Beaumont C. Hepcidin and anemia of the critically ill patient: bench to bedside. Anesthesiology. 2011;114:688–94.

    Article  PubMed  Google Scholar 

  • Locke A, Main ER, Rosbash DO. The copper and non-hemoglobinous iron contents of the blood serum in disease. J Clin Invest. 1932;11:527–42.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lodish H, Flygare J, Chou S. From stem cell to erythroblast: regulation of red cell production at multiple levels by multiple hormones. IUBMB Life. 2010;62:492–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lyon AW, Chin AC, Slotsve GA, Lyon ME. Simulation of repetitive diagnostic blood loss and onset of iatrogenic anemia in critical care patients with a mathematical model. Comput Biol Med. 2013;43:84–90.

    Article  PubMed  Google Scholar 

  • Miller CB, Jones RJ, Piantadosi S, Abeloff MD, Spivak JL. Decreased erythropoietin response in patients with the anemia of cancer. N Engl J Med. 1990;322:1689–92.

    Article  CAS  PubMed  Google Scholar 

  • Millot S, Andrieu V, Letteron P, Lyoumi S, Hurtado-Nedelec M, Karim Z, et al. Erythropoietin stimulates spleen BMP4-dependent stress erythropoiesis and partially corrects anemia in a mouse model of generalized inflammation. Blood. 2010;116:6072–81.

    Article  CAS  PubMed  Google Scholar 

  • Moldawer LL, Marano MA, Wei H, Fong Y, Silen ML, Kuo G, et al. Cachectin/tumor necrosis factor-alpha alters red blood cell kinetics and induces anemia in vivo. Faseb J. 1989;3:1637–43.

    CAS  PubMed  Google Scholar 

  • Nairz M, Sonnweber T, Schroll A, Theurl I, Weiss G. The pleiotropic effects of erythropoietin in infection and inflammation. Microbes Infect. 2012;14:238–46.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nemeth E. Anti-hepcidin therapy for iron-restricted anemias. Blood. 2013;122:2929–31.

    Article  CAS  PubMed  Google Scholar 

  • Nemeth E, Tuttle MS, Powelson J, Vaughn MB, Donovan A, Ward DM, et al. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science. 2004;306:2090–3.

    Article  CAS  PubMed  Google Scholar 

  • Nicolas G, Bennoun M, Devaux I, Beaumont C, Grandchamp B, Kahn A, et al. Lack of hepcidin gene expression and severe tissue iron overload in upstream stimulatory factor 2 (USF2) knockout mice. Proc Natl Acad Sci U S A. 2001;98:8780–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nicolas G, Bennoun M, Porteu A, Mativet S, Beaumont C, Grandchamp B, et al. Severe iron deficiency anemia in transgenic mice expressing liver hepcidin. Proc Natl Acad Sci U S A. 2002a;99:4596–601.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nicolas G, Chauvet C, Viatte L, Danan JL, Bigard X, Devaux I, et al. The gene encoding the iron regulatory peptide hepcidin is regulated by anemia, hypoxia, and inflammation. J Clin Invest. 2002b;110:1037–44.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pak M, Lopez MA, Gabayan V, Ganz T, Rivera S. Suppression of hepcidin during anemia requires erythropoietic activity. Blood. 2006;108:3730–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Piagnerelli M, Boudjeltia KZ, Brohee D, Vincent JL, Vanhaeverbeek M. Modifications of red blood cell shape and glycoproteins membrane content in septic patients. Adv Exp Med Biol. 2003;510:109–14.

    Article  CAS  PubMed  Google Scholar 

  • Pietrangelo A, Dierssen U, Valli L, Garuti C, Rump A, Corradini E, et al. STAT3 is required for IL-6-gp130-dependent activation of hepcidin in vivo. Gastroenterology. 2007;132:294–300.

    Article  CAS  PubMed  Google Scholar 

  • Pigeon C, Ilyin G, Courselaud B, Leroyer P, Turlin B, Brissot P, et al. A new mouse liver-specific gene, encoding a protein homologous to human antimicrobial peptide hepcidin, is overexpressed during iron overload. J Biol Chem. 2001;276:7811–9.

    Article  CAS  PubMed  Google Scholar 

  • Prince OD, Langdon JM, Layman AJ, Prince IC, Sabogal M, Mak HH, et al. Late stage erythroid precursor production is impaired in mice with chronic inflammation. Haematologica. 2012;97:1648–56.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Robinson Y, Hostmann A, Matenov A, Ertel W, Oberholzer A. Erythropoiesis in multiply injured patients. J Trauma. 2006;61:1285–91.

    Article  PubMed  Google Scholar 

  • Rogiers P, Zhang H, Leeman M, Nagler J, Neels H, Melot C, et al. Erythropoietin response is blunted in critically ill patients. Intensive Care Med. 1997;23:159–62.

    Article  CAS  PubMed  Google Scholar 

  • Sasu BJ, Cooke KS, Arvedson TL, Plewa C, Ellison AR, Sheng J, et al. Antihepcidin antibody treatment modulates iron metabolism and is effective in a mouse model of inflammation-induced anemia. Blood. 2010;115:3616–24.

    Article  CAS  PubMed  Google Scholar 

  • Schubert TE, Obermaier F, Ugocsai P, Mannel DN, Echtenacher B, Hofstadter F, et al. Murine models of anaemia of inflammation: extramedullary haematopoiesis represents a species specific difference to human anaemia of inflammation that can be eliminated by splenectomy. Int J Immunopathol Pharmacol. 2008;21:577–84.

    CAS  PubMed  Google Scholar 

  • Thawani N, Tam M, Chang KH, Stevenson MM. Interferon-gamma mediates suppression of erythropoiesis but not reduced red cell survival following CpG-ODN administration in vivo. Exp Hematol. 2006;34:1451–61.

    Article  CAS  PubMed  Google Scholar 

  • Theurl I, Aigner E, Theurl M, Nairz M, Seifert M, Schroll A, et al. Regulation of iron homeostasis in anemia of chronic disease and iron deficiency anemia: diagnostic and therapeutic implications. Blood. 2009;113:5277–86.

    Article  CAS  PubMed  Google Scholar 

  • Torti FM, Torti SV. Regulation of ferritin genes and protein. Blood. 2002;99:3505–16.

    Article  CAS  PubMed  Google Scholar 

  • van Iperen CE, Gaillard CA, Kraaijenhagen RJ, Braam BG, Marx JJ, van de Wiel A. Response of erythropoiesis and iron metabolism to recombinant human erythropoietin in intensive care unit patients. Crit Care Med. 2000;28:2773–8.

    Article  PubMed  Google Scholar 

  • Verga Falzacappa MV, Vujic Spasic M, Kessler R, Stolte J, Hentze MW, Muckenthaler MU. STAT3 mediates hepatic hepcidin expression and its inflammatory stimulation. Blood. 2007;109:353–8.

    Article  PubMed  Google Scholar 

  • Vincent JL, Baron JF, Reinhart K, Gattinoni L, Thijs L, Webb A, et al. Anemia and blood transfusion in critically ill patients. JAMA. 2002;288:1499–507.

    Article  PubMed  Google Scholar 

  • Vokurka M, Krijt J, Sulc K, Necas E. Hepcidin mRNA levels in mouse liver respond to inhibition of erythropoiesis. Physiol Res. 2006;55:667–74.

    CAS  PubMed  Google Scholar 

  • von Ahsen N, Muller C, Serke S, Frei U, Eckardt KU. Important role of nondiagnostic blood loss and blunted erythropoietic response in the anemia of medical intensive care patients. Crit Care Med. 1999;27:2630–9.

    Article  Google Scholar 

  • Wallner SF, Vautrin R, Katz J. The haematopoietic response to burning: studies in a splenectomized animal model. Burns Incl Therm Inj. 1987;13:15–21.

    Article  CAS  PubMed  Google Scholar 

  • Walsh TS, Lee RJ, Maciver CR, Garrioch M, Mackirdy F, Binning AR, et al. Anemia during and at discharge from intensive care: the impact of restrictive blood transfusion practice. Intensive Care Med. 2006;32:100–9.

    Article  PubMed  Google Scholar 

  • Weiss G, Goodnough LT. Anemia of chronic disease. N Engl J Med. 2005;352:1011–23.

    Article  CAS  PubMed  Google Scholar 

  • Wrighting DM, Andrews NC. Interleukin-6 induces hepcidin expression through STAT3. Blood. 2006;108:3204–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wu JC, Livingston DH, Hauser CJ, Deitch EA, Rameshwar P. Trauma inhibits erythroid burst-forming unit and granulocyte-monocyte colony-forming unit growth through the production of TGF-beta1 by bone marrow stroma. Ann Surg. 2001;234:224–32.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sigismond Lasocki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Rineau, E., Gaillard, T., Lasocki, S. (2014). Anemia of the Critically Ill Patient: Pathophysiology, Lessons from Animal Models . In: Rajendram, R., Preedy, V., Patel, V. (eds) Diet and Nutrition in Critical Care. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8503-2_133-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8503-2_133-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-8503-2

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics