Skip to main content

Amniotic Fluid and Colostrum as Potential Diets in the Critical Care of Preterm Infants

  • Living reference work entry
  • First Online:
Diet and Nutrition in Critical Care

Abstract

Amniotic fluid is the enteral “diet” of the developing fetus, while the first mammary gland secretion, colostrum, is the natural diet of the newborn mammal. Both diets contain nutrients but also growth factors, immune-modulating components, and antibacterial agents that support perinatal organ development, particularly of the gastrointestinal (GI) tract. Birth requires a sudden transition to nutrient uptake via the GI tract and exposure to microorganisms. Ingestion of amniotic fluid before birth and of colostrum just after birth helps to adapt GI functions and provides protection against detrimental immune responses. Experimental studies indicate that these fluids may also have beneficial effects in certain GI disease conditions, particularly those related to immature digestive and immune function. We provide a brief review of the functions and composition of mammalian amniotic fluid and colostrum, and we describe how these fluids may have a therapeutic potential for GI conditions in some pediatric patients, particularly preterm infants. The composition of the two fluids varies widely among different species and the effects are likely highly species specific. Some effects may however be species independent, maybe allowing colostrum from one species (i.e., lactating cows) to be used as the first enteral diet for infants for whom mother’s milk is lacking. The use of amniotic fluid and bovine colostrum in the critical care of neonates is still at an experimental stage, but animal studies have shown promising results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

GI:

Gastrointestinal

MEN:

Minimal enteral nutrition

NEC:

Necrotizing enterocolitis

SBS:

Short bowel syndrome

References

  • Aunsholt L, Jeppesen PB, Lund P, et al. Bovine colostrum to children with short bowel syndrome: a randomized, double-blind, crossover pilot study. JPEN J Parenter Enteral Nutr. 2014;38:99–106.

    Article  PubMed  Google Scholar 

  • Barney CK, Lambert DK, Alder SC, et al. Treating feeding intolerance with an enteral solution patterned after human amniotic fluid: a randomized, controlled, masked trial. J Perinatol. 2007;27:28–31.

    Article  CAS  PubMed  Google Scholar 

  • Bastek JA, Gomez LM, Elovitz MA. The role of inflammation and infection in preterm birth. Clin Perinatol. 2011;38:385–406.

    Article  PubMed  Google Scholar 

  • Berman L, Moss RL. Necrotizing enterocolitis: an update. Semin Fetal Neonatal Med. 2011;16:145–50.

    Article  PubMed  Google Scholar 

  • Bernt KM, Walker WA. Human milk as a carrier of biochemical messages. Acta Paediatr Suppl. 1999;88:27–41.

    Article  CAS  PubMed  Google Scholar 

  • Bjornvad CR, Thymann T, Deutz NE, et al. Enteral feeding induces diet-dependent mucosal dysfunction, bacterial proliferation, and necrotizing enterocolitis in preterm pigs on parenteral nutrition. Am J Physiol Gastrointest Liver Physiol. 2008;295:G1092–103.

    Article  CAS  PubMed  Google Scholar 

  • Blakelock R, Upadhyay V, Kimble R, et al. Is a normally functioning gastrointestinal tract necessary for normal growth in late gestation? Pediatr Surg Int. 1998;13:17–20.

    Article  CAS  PubMed  Google Scholar 

  • Blum JW, Hammon H. Colostrum effects on the gastrointestinal tract, and on nutritional, endocrine and metabolic parameters in neonatal calves. Livest Prod Sci. 2000;66:151–9.

    Article  Google Scholar 

  • Brandtzaeg P. Mucosal immunity: integration between mother and the breast-fed infant. Vaccine. 2003;21:3382–8.

    Article  CAS  PubMed  Google Scholar 

  • Buchmiller TL, Gregg J, Rivera FA, et al. Effect of esophageal ligation on the development of fetal rabbit intestinal lactase. J Pediatr Surg. 1993;28:1473–7.

    Article  CAS  PubMed  Google Scholar 

  • Burjonrappa SC, Crete E, Bouchard S. The role of amniotic fluid in influencing neonatal birth weight. J Perinatol. 2010;30:27–9.

    Article  CAS  PubMed  Google Scholar 

  • Cabrera-Rubio R, Collado MC, Laitinen K, et al. The human milk microbiome changes over lactation and is shaped by maternal weight and mode of delivery. Am J Clin Nutr. 2012;96:544–51.

    Article  CAS  PubMed  Google Scholar 

  • Calhoun DA. Enteral administration of hematopoietic growth factors in the neonatal intensive care unit. Acta Paediatr. 2002;91:43–53.

    Article  CAS  Google Scholar 

  • Caplan MS, Russell T, Xiao Y, et al. Effect of Polyunsaturated Fatty Acid (PUFA) supplementation on intestinal inflammation and Necrotizing Enterocolitis (NEC) in a neonatal rat model. Pediatr Res. 2001;49:647–52.

    Article  CAS  PubMed  Google Scholar 

  • Cellini C, Xu J, Buchmiller TL. Effect of esophageal ligation on small intestinal development in normal and growth-retarded fetal rabbits. J Pediatr Gastroenterol Nutr. 2006;43:291–8.

    Article  PubMed  Google Scholar 

  • Chatterton DE, Nguyen DN, Bering SB, et al. Anti-inflammatory mechanisms of bioactive milk proteins in the intestine of newborns. Int J Biochem Cell Biol. 2013;45:1730–47.

    Article  CAS  PubMed  Google Scholar 

  • Christensen RD, Havranek T, Gerstmann DR, et al. Enteral administration of a simulated amniotic fluid to very low birth weight neonates. J Perinatol. 2005;25:380–5.

    Article  PubMed  Google Scholar 

  • Cilieborg MS, Boye M, Thymann T, et al. Diet-dependent effects of minimal enteral nutrition on intestinal function and necrotizing enterocolitis in preterm pigs. JPEN J Parenter Enteral Nutr. 2011;35:32–42.

    Article  CAS  PubMed  Google Scholar 

  • Claud EC, Savidge T, Walker WA. Modulation of human intestinal epithelial cell IL-8 secretion by human milk factors. Pediatr Res. 2003;53:419–25.

    Article  CAS  PubMed  Google Scholar 

  • Committee on Nutritional Status During Pregnancy and Lactation and Institute of Medicine. Nutrition during lactation. Washington: The National Academies Press; 1991. p. 113–52.

    Google Scholar 

  • Condino AA, Barleycorn AA, Lu W, et al. Abnormal intestinal histology in neonates with congenital anomalies of the gastrointestinal tract. Biol Neonate. 2004;85:145–50.

    Article  PubMed  Google Scholar 

  • Espinoza J, Romero R, Chaiworapongsa T, et al. Lipopolysaccharide-binding protein in microbial invasion of the amniotic cavity and human parturition. J Matern Fetal Neonatal Med. 2002;12:313–21.

    Article  CAS  PubMed  Google Scholar 

  • Espinoza J, Chaiworapongsa T, Romero R, et al. Antimicrobial peptides in amniotic fluid: defensins, calprotectin and bacterial/permeability-increasing protein in patients with microbial invasion of the amniotic cavity, intra-amniotic inflammation, preterm labor and premature rupture of membranes. J Matern Fetal Neonatal Med. 2003;13:2–21.

    Article  CAS  PubMed  Google Scholar 

  • Ewaschuk JB, Unger S, Harvey S, et al. Effect of pasteurization on immune components of milk: implications for feeding preterm infants. Appl Physiol Nutr Metab. 2011;36:175–82.

    Article  CAS  PubMed  Google Scholar 

  • Fallon EM, Nehra D, Potemkin AK, et al. A.S.P.E.N. clinical guidelines: nutrition support of neonatal patients at risk for necrotizing enterocolitis. JPEN J Parenter Enteral Nutr. 2012;36:506–23.

    Article  CAS  PubMed  Google Scholar 

  • Field CJ. The immunological components of human milk and their effect on immune development in infants. J Nutr. 2005;135:1–4.

    CAS  PubMed  Google Scholar 

  • Ghionzoli M, Cananzi M, Zani A, et al. Amniotic fluid stem cell migration after intraperitoneal injection in pup rats: implication for therapy. Pediatr Surg Int. 2010;26:79–84.

    Article  PubMed  Google Scholar 

  • Good M, Siggers RH, Sodhi CP, et al. Amniotic fluid inhibits toll-like receptor 4 signaling in the fetal and neonatal intestinal epithelium. Proc Natl Acad Sci USA. 2012;109:11330–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gopal PK, Gill HS. Oligosaccharides and glycoconjugates in bovine milk and colostrum. Br J Nutr. 2000;84:S69–74.

    Article  CAS  PubMed  Google Scholar 

  • Harman CR. Amniotic fluid abnormalities. Semin Perinatol. 2008;32:288–94.

    Article  PubMed  Google Scholar 

  • Henry MC, Moss RL. Necrotizing enterocolitis. Annu Rev Med. 2009;60:111–24.

    Article  CAS  PubMed  Google Scholar 

  • Hirai C, Ichiba H, Saito M, et al. Trophic effect of multiple growth factors in amniotic fluid or human milk on cultured human fetal small intestinal cells. J Pediatr Gastroenterol Nutr. 2002;34:524–8.

    Article  PubMed  Google Scholar 

  • Hurley WL, Theil PK. Perspectives on immunoglobulins in colostrum and milk. Nutrients. 2011;3:442–74.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jensen ML, Sangild PT, Lykke M, et al. Similar efficacy of human banked milk and bovine colostrum to decrease incidence of necrotizing enterocolitis in preterm piglets. Am J Physiol Regul Integr Comp Physiol. 2013;305:R4–R12.

    Article  CAS  PubMed  Google Scholar 

  • Kerr MA. The structure and function of human IgA. Biochem J. 1990;271:285–96.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kong W, Yee LF, Mulvihill SJ. Hepatocyte growth factor stimulates fetal gastric epithelial cell growth in vitro. J Surg Res. 1998;78:161–8.

    Article  CAS  PubMed  Google Scholar 

  • Lang AK, Searle RF. The immunomodulatory activity of human amniotic fluid can be correlated with transforming growth factor-beta 1 (TGF-beta 1) and beta 2 activity. Clin Exp Immunol. 1994;97:158–63.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li Y, Jensen ML, Chatterton DE, et al. Raw bovine milk improves gut responses to feeding relative to infant formula in preterm piglets. Am J Physiol Gastrointest Liver Physiol. 2014;306:G81–90.

    Article  CAS  PubMed  Google Scholar 

  • Liepke C, Adermann K, Raida M, et al. Human milk provides peptides highly stimulating the growth of bifidobacteria. Eur J Biochem. 2002;269:712–8.

    Article  CAS  PubMed  Google Scholar 

  • Lima-Rogel V, Calhoun DA, Maheshwari A, et al. Tolerance of a sterile isotonic electrolyte solution containing select recombinant growth factors in neonates recovering from necrotizing enterocolitis. J Perinatol. 2003;23:200–4.

    Article  CAS  PubMed  Google Scholar 

  • Lindberg T. Protease inhibitors in human milk. Pediatr Res. 1979;13:969–72.

    Article  CAS  PubMed  Google Scholar 

  • Lu J, Jilling T, Li D, et al. Polyunsaturated fatty acid supplementation alters proinflammatory gene expression and reduces the incidence of necrotizing enterocolitis in a neonatal rat model. Pediatr Res. 2007;61:427–32.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lund P, Sangild PT, Aunsholt L, et al. Randomised controlled trial of colostrum to improve intestinal function in patients with short bowel syndrome. Eur J Clin Nutr. 2012;66:1059–65.

    Article  CAS  PubMed  Google Scholar 

  • Maheshwari A, Kelly DR, Nicola T, et al. TGF-beta(2) suppresses macrophage cytokine production and mucosal inflammatory responses in the developing intestine. Gastroenterology. 2011;140:242–53.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Møller HK, Fink LN, Sangild PT, et al. Colostrum and amniotic fluid from different species exhibit similar immunomodulating effects in bacterium-stimulated dendritic cells. J Interferon Cytokine Res. 2011a;31:813–23.

    Article  Google Scholar 

  • Møller HK, Thymann T, Fink LN, et al. Bovine colostrum is superior to enriched formulas in stimulating intestinal function and necrotising enterocolitis resistance in preterm pigs. Br J Nutr. 2011b;105:44–53.

    Article  PubMed  Google Scholar 

  • Montjaux-Régis N, Cristini C, Arnaud C, et al. Improved growth of preterm infants receiving mother’s own raw milk compared with pasteurized donor milk. Acta Paediatr. 2011;100:1548–54.

    Article  PubMed  Google Scholar 

  • Morgan J, Young L, McGuire W. Slow advancement of enteral feed volumes to prevent necrotising enterocolitis in very low birth weight infants. Cochrane Database Syst Rev. 2011;3:CD001241.

    PubMed  Google Scholar 

  • Mulvihill SJ, Stone MM, Debas HT, et al. The role of amniotic fluid in fetal nutrition. J Pediatr Surg. 1985;20:668–72.

    Article  CAS  PubMed  Google Scholar 

  • Mulvihill SJ, Hallden G, Debas HT. Trophic effect of amniotic fluid on cultured fetal gastric mucosal cells. J Surg Res. 1989;46:327–9.

    Article  CAS  PubMed  Google Scholar 

  • Murtaugh MA, Sharbaugh C, Sofka D. Nutrition and lactation. In: Brown JE, Isaacs JS, Krinke BU, et al., editors. Nutrition through the life cycle. 2nd ed. London: Thomson Wadsworth; 2005. p. 143–72.

    Google Scholar 

  • Østergaard MV, Bering SB, Jensen ML, et al. Modulation of intestinal inflammation by minimal enteral nutrition with amniotic fluid in preterm pigs. JPEN J Parenter Enteral Nutr. 2013. doi:10.1177/0148607113489313.

    PubMed  Google Scholar 

  • Pakkanen R, Aalto J. Growth factors and antimicrobial factors of bovine colostrum. Int Dairy J. 1997;7:285–97.

    Article  CAS  Google Scholar 

  • Pitkin RM, Reynolds WA. Fetal ingestion and metabolism of amniotic fluid protein. Am J Obstet Gynecol. 1975;123:356–63.

    CAS  PubMed  Google Scholar 

  • Playford RJ, MacDonald CE, Johnson WS. Colostrum and milk-derived peptide growth factors for the treatment of gastrointestinal disorders. Am J Clin Nutr. 2000;72:5–14.

    CAS  PubMed  Google Scholar 

  • Pontoppidan PL, Shen RL, Petersen BL, et al. Intestinal response to myeloablative chemotherapy in piglets. Exp Biol Med. 2014;239:94–104.

    Article  Google Scholar 

  • Prentice AD. Regional variations in the composition of human milk. In: Robert GJ, editor. Handbook of milk composition. San Diego: Academic; 1995. p. 115–221.

    Chapter  Google Scholar 

  • Pritchard JA. Fetal swallowing and amniotic fluid volume. Obstet Gynecol. 1966;28:606–10.

    CAS  PubMed  Google Scholar 

  • Puiman PJ, Jensen M, Stoll B, et al. Intestinal threonine utilization for protein and mucin synthesis is decreased in formula-fed preterm pigs. J Nutr. 2011;141:1306–11.

    Article  CAS  PubMed  Google Scholar 

  • Quigley MA, Henderson G, Anthony MY, et al. Formula milk versus donor breast milk for feeding preterm or low birth weight infants. Cochrane Database Syst Rev. 2008;2:CD002971.

    Google Scholar 

  • Rathe M, Müller K, Sangild PT, et al. Clinical applications of bovine colostrum therapy: a systematic review. Nutr Rev. 2014;72:237–54.

    Google Scholar 

  • Rautava S, Nanthakumar NN, Dubert-Ferrandon A, et al. Breast milk-transforming growth factor-beta(2) specifically attenuates IL-1beta-induced inflammatory responses in the immature human intestine via an SMAD6- and ERK-dependent mechanism. Neonatology. 2010;99:192–201.

    Article  PubMed Central  PubMed  Google Scholar 

  • Rautava S, Lu L, Nanthakumar NN, et al. TGF-beta2 induces maturation of immature human intestinal epithelial cells and inhibits inflammatory cytokine responses induced via the NF-kappaB pathway. J Pediatr Gastroenterol Nutr. 2012;54:630–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ross MG, Brace RA. National institute of child health and development conference summary: amniotic fluid biology–basic and clinical aspects. J Matern Fetal Med. 2001;10:2–19.

    Article  CAS  PubMed  Google Scholar 

  • Sangild PT, Schmidt M, Elnif J, et al. Prenatal development of gastrointestinal function in the pig and the effects of fetal esophageal obstruction. Pediatr Res. 2002;52:416–24.

    Article  PubMed  Google Scholar 

  • Sangild PT, Siggers RH, Schmidt M, et al. Diet- and colonization-dependent intestinal dysfunction predisposes to necrotizing enterocolitis in preterm pigs. Gastroenterology. 2006;130:1776–92.

    Article  CAS  PubMed  Google Scholar 

  • Schaart MW, Yamanouchi T, van Nispen DJ, et al. Does small intestinal atresia affect epithelial protein expression in human newborns? J Pediatr Gastroenterol Nutr. 2006;43:576–83.

    Article  CAS  PubMed  Google Scholar 

  • Schanler RJ, Lau C, Hurst NM, et al. Randomized trial of donor human milk versus preterm formula as substitutes for mothers’ own milk in the feeding of extremely premature infants. Pediatrics. 2005;116:400–6.

    Article  PubMed  Google Scholar 

  • Shah NP. Effects of milk-derived bioactives: an overview. Br J Nutr. 2000;84:S3–S10.

    Article  CAS  PubMed  Google Scholar 

  • Shaw SW, David A, De CP. Clinical applications of prenatal and postnatal therapy using stem cells retrieved from amniotic fluid. Curr Opin Obstet Gynecol. 2011;23:109–16.

    Article  PubMed  Google Scholar 

  • Sherman DJ, Ross MG, Day L, et al. Fetal swallowing: correlation of electromyography and esophageal fluid flow. Am J Physiol. 1990;258:R1386–94.

    CAS  PubMed  Google Scholar 

  • Shohat B, Faktor JM. Immunosuppressive activity of human amniotic fluid of normal and abnormal pregnancies. Int J Fertil. 1988;33:273–7.

    CAS  PubMed  Google Scholar 

  • Siggers JL, Sangild PT, Jensen TK, et al. Transition from parenteral to enteral nutrition induces immediate diet-dependent gut histological and immunological responses in preterm neonates. Am J Physiol Gastrointest Liver Physiol. 2011;301:G435–45.

    Article  CAS  PubMed  Google Scholar 

  • Siggers JL, Østergaard MV, Siggers RH, et al. Postnatal amniotic fluid intake reduces gut inflammatory responses and necrotizing enterocolitis in preterm neonates. Am J Physiol Gastrointest Liver Physiol. 2013;304:G864–75.

    Article  CAS  PubMed  Google Scholar 

  • Silva SV, Malcata FX. Caseins as source of bioactive peptides. Int Dairy J. 2005;15:1–15.

    Article  CAS  Google Scholar 

  • Støy ACF, Heegaard PMH, Thymann T, et al. Bovine colostrum improves intestinal function following formula-induced gut inflammation in preterm pigs. ClinNutr. 2013. doi:10.1016/j.clnu.2013.05.013.

    Google Scholar 

  • Sullivan SE, Calhoun DA, Maheshwari A, et al. Tolerance of simulated amniotic fluid in premature neonates. Ann Pharmacother. 2002;36:1518–24.

    Article  PubMed  Google Scholar 

  • Thapa BR. Health factors in colostrum. Indian J Pediatr. 2005;72:579–81.

    Article  CAS  PubMed  Google Scholar 

  • Tisi DK, Emard JJ, Koski KG. Total protein concentration in human amniotic fluid is negatively associated with infant birth weight. J Nutr. 2004;134:1754–8.

    CAS  PubMed  Google Scholar 

  • Tong X. Amniotic fluid may act as a transporting pathway for signaling molecules and stem cells during the embryonic development of amniotes. J Chin Med Assoc. 2013;76:606–10.

    Article  CAS  PubMed  Google Scholar 

  • Trahair JF, Harding R. Restitution of swallowing in the fetal sheep restores intestinal growth after midgestation esophageal obstruction. J Pediatr Gastroenterol Nutr. 1995;20:156–61.

    Article  CAS  PubMed  Google Scholar 

  • Trahair JF, Sangild PT. Fetal organ growth in response to oesophageal infusion of amniotic fluid, colostrum, milk or gastrin-releasing peptide: a study in fetal sheep. Reprod Fertil Dev. 2000;12:87–95.

    Article  CAS  PubMed  Google Scholar 

  • Trahair JF, Harding R, Bocking AD, et al. The role of ingestion in the development of the small intestine in fetal sheep. Q J Exp Physiol. 1986;71:99–104.

    CAS  PubMed  Google Scholar 

  • Underwood MA, Gilbert WM, Sherman MP. Amniotic fluid: not just fetal urine anymore. J Perinatol. 2005;25:341–8.

    Article  PubMed  Google Scholar 

  • Wagner CL, Taylor SN, Johnson D. Host factors in amniotic fluid and breast milk that contribute to gut maturation. Clin Rev Allergy Immunol. 2008;34:191–204.

    Article  PubMed  Google Scholar 

  • Walker A. Breast milk as the gold standard for protective nutrients. J Pediatr. 2010;156:S3–7.

    Article  CAS  PubMed  Google Scholar 

  • WHO. The optimal duration of exclusive breastfeeding: a systematic review. Geneva: World Health Organization; 2010.

    Google Scholar 

  • Yoshio H, Tollin M, Gudmundsson GH, et al. Antimicrobial polypeptides of human vernix caseosa and amniotic fluid: implications for newborn innate defense. Pediatr Res. 2003;53:211–6.

    Article  CAS  PubMed  Google Scholar 

  • Zani A, Cananzi M, Fascetti-Leon F, et al. Amniotic fluid stem cells improve survival and enhance repair of damaged intestine in necrotising enterocolitis via a COX-2 dependent mechanism. Gut. 2014;63:300–9.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Per Torp Sangild .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Støy, A.C.F., Østergaard, M.V., Sangild, P.T. (2014). Amniotic Fluid and Colostrum as Potential Diets in the Critical Care of Preterm Infants. In: Rajendram, R., Preedy, V., Patel, V. (eds) Diet and Nutrition in Critical Care. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8503-2_131-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8503-2_131-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-8503-2

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics