Skip to main content

Critical Illness and the Intestinal Microflora: pH as a Surrogate Marker

  • Living reference work entry
  • First Online:
Diet and Nutrition in Critical Care

Abstract

During critical illness, the intestinal tract is highly vulnerable to stress, which may be reflected by alterations in intraluminal pH. Subtle changes in luminal and mucosal pH may be sensed by the indigenous intestinal microbiota, resulting an alteration in their phenotype and their ability to protect the mucosa. In this paper, we examine the role of intestinal pH in critical illness, by highlighting current knowledge and advances in the study of this dynamic relationship between host and microbe. This chapter will mainly focus on intestinal microflora and the usefulness of pH as a marker for critical illness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Allaart JG, Van Asten AJ, Vernooij JC, Grone A. Effect of lactobacillus fermentum on beta2 toxin production by Clostridium perfringens. Appl Environ Microbiol. 2011;77(13):4406–11.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Allaart JG, van Asten AJ, Grone A. Predisposing factors and prevention of Clostridium perfringens-associated enteritis. Comp Immunol Microbiol Infect Dis. 2013. http://dx.doi.org/10.1016/j.cimid.2013.05.001

  • Alteri CJ, Lindner JR, Reiss DJ, Smith SN, Mobley HLT. The broadly conserved regulator PhoP links pathogen virulence and membrane potential in Escherichia coli. Mol Microbiol. 2011;82:145–63. doi:10.1111/j.1365-2958.2011.07804.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Alverdy J, Holbrook C, Rocha F, Seiden L, Wu RL, Musch M, Chang E, Ohman D, Suh S. Gut-derived sepsis occurs when the right pathogen with the right virulence genes meets the right host: evidence for in vivo virulence expression in Pseudomonas aeruginosa. Ann Surg. 2000;232(4):480–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Aoki T, Yamaji I, Hisamoto T, Sato M, Matsuda T. Irregular bowel movement in gastrectomized subjects: bowel habits, stool characteristics, fecal flora, and metabolites. Gastric Cancer. 2012;15(4):396–404.

    Article  CAS  PubMed  Google Scholar 

  • Bown RL, Gibson JA, Sladen GE, Hicks B, Dawson AM. Effects of lactulose and other laxatives on ileal and colonic pH as measured by a radiotelemetry device. Gut. 1974;15(12):999–1004.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Clark JA, Coopersmith CM. Intestinal crosstalk: a new paradigm for understanding the gut as the “motor” of critical illness. Shock. 2007;28:384–93.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Davis D, Edwards Jr JE, Michell AP, Ibrahim AS. Candida albicans RIM101 pH response pathway is required for host-pathogen interactions. Infect Immun. 2000;68(10):5953–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Down PF, Agostini L, Murison J, et al. The interrelations of faecal ammonia, pH and bicarbonate: evidence of colonic absorption of ammonia by non-ionic diffusion. Clin Sci. 1972;43:101–14.

    CAS  PubMed  Google Scholar 

  • Duncan SH, Louis P, Thomson JM, Fint HJ. The role of pH in determining the species composition of the human colonic microbiota. Environ Microbiol. 2009;11(8):2112–22.

    Article  PubMed  Google Scholar 

  • Evans DF, Pye G, Bramley R, Clark AG, Dyson TJ, Hardcastle JD. Measurement of gastrointestinal pH profiles in normal ambulant human subjects. Gut. 1988;29(8):1035–41.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ewe K, Schwartz S, Petersen S, Press AG. Inflammation does not decrease intraluminal pH in chronic inflammatory bowel disease. Dig Dis Sci. 1999;44(7):1434–9.

    Article  CAS  PubMed  Google Scholar 

  • Fiddian-Green RG. Gut mucosal ischemia during cardiac surgery. Semin Thorac Cardiovasc Surg. 1990;2:389–99.

    CAS  PubMed  Google Scholar 

  • Fiddian-Green RG, Baker S. Predictive value of stomach wall pH for complications after cardiac operations: comparison with other monitoring. Crit Care Med. 1987;15:153–6.

    Article  CAS  PubMed  Google Scholar 

  • Fiddian-Green RG, Amelin PM, Herrmann JB, et al. Prediction of the development of sigmoid ischaemia on the day of aortic operations: indirect measurements of intramural pH in the colon. Arch Surg. 1986;121:654–60.

    Article  CAS  PubMed  Google Scholar 

  • Gerritsen J, Smidt H, Rijkers GT. Intestinal microbiota in human health and disease: the impact of probiotics. Genes Nutr. 2011;6:209–40.

    Article  PubMed Central  PubMed  Google Scholar 

  • Groeneveld AB, Kolkman JJ. Splanchnic tonometry: a review of physiology, methodology, and clinical applications. J Crit Care. 1994;9:198–210.

    Article  CAS  PubMed  Google Scholar 

  • Hill DA, Hoffman C, Abt MC, Du Y, Kobuley D, Kirm TJ, Bushman FD, Artis D. Metagenomic analyses reveal antibiotic-induced temporal and spatial changes in intestinal microbiota with associated alterations in immune cell homeostasis. Mucosal Immunol. 2010;3(2):148–58.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kohl KD, Stengel A, Samuni-Blank M, Dearing MD. Effects of anatomy and diet on gastrointestinal pH in rodents. J Exp Zool. 2013;319A:225–9.

    Article  Google Scholar 

  • Lupton JR, Coder DM, Jacobs LR. Long-term effects of fermentable fibers on rat colonic pH and epithelial cycle. J Nutr. 1988;118:840–5.

    CAS  PubMed  Google Scholar 

  • Maynard ND, Taylor PR, Mason RC, et al. Gastric intramucosal pH predicts outcome after surgery for ruptured abdominal aortic aneurysm. Eur J Vasc Endovasc Surg. 1996;11:201–6.

    Article  CAS  PubMed  Google Scholar 

  • Morowitz MJ, Babrowski T, Carlisle EM, Olivas A, Romanowski KS, Seal JB, Liu DC, Alverdy JC. The human microbiome and surgical disease. Ann Surg. 2011;253(6):1094–101.

    Article  PubMed  Google Scholar 

  • Mythen MG, Webb AR. Intra-operative gut mucosal hypoperfusion is associated with increased post-operative complication and cost. Intensive Care Med. 1994a;20:99–104.

    Article  CAS  PubMed  Google Scholar 

  • Mythen MG, Webb AR. The role of gut mucosal hypoperfusion in the pathogenesis of post-operative organ dysfunction. Intensive Care Med. 1994b;20:203–9.

    Article  CAS  PubMed  Google Scholar 

  • Mythen MG, Webb AR. Perioperative plasma volume expansion reduces the incidence of gut mucosal hypoperfusion during cardiac surgery. Arch Surg. 1995;130:423–9.

    Article  CAS  PubMed  Google Scholar 

  • Nugent SG, Kumar D, Rampton DS, Evans DF. Intestinal luminal pH in inflammatory bowel disease: possible determinants and implications for therapy with aminosalicylates and other drugs. Gut. 2001;48(4):571–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nunez-Hernandez C, Tierrez A, Ortega AD, Pucciarelli MG, Godoy M, Eisman B, Casadesus J, Garcia-del Portillo F. Genome expression analysis of nonproliferating intracellular Salmonella enterica serovar Typhimurium unravels an acid pH-dependent PhoP-PhoQ response essential for dormancy. Infect Immun. 2013;81(1):154–65.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Osuaka A, Shimizu K, Ogura H, Tasaki O, Hamasaki T, Asahara T, Nomoto K, Morotomi M, Kuwagata Y, Simazu T. Prognostic impact of fecal pH in critically ill patients. Crit Care. 2012;16:R119.

    Article  Google Scholar 

  • Press AG, Hauptmann IA, Hauptmann L, Fuchs B, Fuchs M, Ewe K, Ramadori G. Gastrointestinal pH profiles in patients with inflammatory bowel disease. Aliment Pharmacol Ther. 1998;12(7):673–8.

    Article  CAS  PubMed  Google Scholar 

  • Pye G, Crompton J, Evans D. Effect of dietary fibre on colonic pH in healthy volunteers. Gut. 1987;28:A1366.

    Google Scholar 

  • Romanowski K, et al. Prevention of siderophore mediated gut-derived sepsis due to P. aeruginosa can be achieved without iron provision by maintaining local phosphate abundance: role of pH. BMC Microbiol. 2011;11:212.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rubinstein R, Howard AV, Wrong OM. In vivo dialysis of faeces as a method of stool analysis. IV. The organic anion component. Clin Sci. 1969;37:549–64.

    CAS  PubMed  Google Scholar 

  • Samuels JX. Cranial morphology and dietary habits of rodents. Zool J Linn Soc. 2009;156:864–88.

    Article  Google Scholar 

  • Schmidt C, Lautenschläger C, Petzold B, Sakr Y, Marx G, Stallmach A. Confocal laser endomicroscopy reliably detects sepsis-related and treatment-associated changes in intestinal mucosal microcirculation. Br J Anaesth. 2013;111:996–1003.

    Article  CAS  PubMed  Google Scholar 

  • Shimizu K, Ogura H, Goto M, Asahara T, Nomoto K, Morotomi M, Yoshiya K, Matsushima A, Sumi Y, Kuwagata Y, et al. Altered gut flora and environment in patients with severe SIRS. J Trauma. 2006;60(1):126–33.

    Article  PubMed  Google Scholar 

  • Sommer H, Kasper H. Effect of long-term administration of dietary fiber on the exocrine pancreas in the rat. Hepatogastroenterology. 1984;31:176–9.

    CAS  PubMed  Google Scholar 

  • Stock-Damge C, Bouchet P, Dentinger A, Aprahamian M, Grenier JF. Effects of dietary fiber supplementation on the secretory function of the exocrine pancreas in the dog. Am J Clin Nutr. 1983;38:843–8.

    CAS  PubMed  Google Scholar 

  • Von Rosenvinge EC, Sang Y, White JR, Maddox C, Blanchard T, Fricke WF. Immune status, antibiotic medication and pH are associated with changes in the stomach fluid microbiota. ISME J. 2013;7(7):1354–66.

    Article  Google Scholar 

  • Wu L, Kohler JE, Zaborina O, Akash G, Musch MW, Chang EB, Alverdy J. Chronic acid water feeding protects mice against lethal gut-derived sepsis due to Pseudomonas aeruginosa. Curr Issues Intest Microbiol. 2006;7:19–28.

    CAS  PubMed  Google Scholar 

  • Yoshioka M, Shimomura Y, Suzuki M. Dietary polydextrose affects the large intestine in rats. J Nutr. 1994;124:539–47.

    CAS  PubMed  Google Scholar 

  • Zebrowska T, Low AG. The influence of diets based on whole wheat, wheat flour, and wheat bran on exocrine pancreatic secretion in pigs. J Nutr. 1987;117:1212–6.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grants: RO1 GM062344-13, DK-38510, and DK-47722 and Digestive Disease Center grant: DK-42086.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irma Fleming .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science and Business Media New York (outside the USA)

About this entry

Cite this entry

Fleming, I., Defazio, J., Zaborina, O., Alverdy, J.C. (2014). Critical Illness and the Intestinal Microflora: pH as a Surrogate Marker. In: Rajendram, R., Preedy, V., Patel, V. (eds) Diet and Nutrition in Critical Care. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8503-2_116-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8503-2_116-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-8503-2

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics