Skip to main content

Enteral and Parenteral Feeding and Monocyte Gene Expression in Critically Ill Patients

  • Living reference work entry
  • First Online:
Diet and Nutrition in Critical Care

Abstract

During prolonged critical illness, most patients require life-sustaining nutritional support in the form of either enteral nutrition or parenteral nutrition. In providing much needed energy, nutritional support is indicated to counteract the effect of hypermetabolism on the stressed, critically ill patient. While intravenous nutrition was once believed to be a panacea, it is now known to have a significant and negative impact on critically ill patients. As the differential effects of enteral and parenteral nutrition are being investigated from both the clinical and basic science perspectives, it is apparent that specialized nutritional support has a profound impact on innate immunity and leukocyte gene expression. In particular, parenteral nutrition may be associated with an exaggerated immune response.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

CCK:

Cholecystokinin

DAMP:

Damage-associated molecular pattern

EN:

Enteral nutrition

GHS-R:

Growth hormone secretagogue receptor

HRV:

Heart rate variability

IgA:

Immunoglobulin A

IL:

Interleukin

LPS:

Lipopolysaccharide

MALT:

Mucosa-associated lymphoid tissue

NK:

Natural killer

PAMP:

Pathogen-associated molecular pattern

PBM:

Peripheral blood monocytes

PN:

Parenteral nutrition

PRR:

Pattern recognition receptor

RES:

Reticuloendothelial system

TNF-a:

Tumor necrosis factor alpha

References

  • Abrishami R, et al. Comparison of the inflammatory effects of early supplemental parenteral nutrition plus enteral nutrition versus enteral nutrition alone in critically ill patients. Daru. 2010;18(2):103–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Alverdy JC, et al. Total parenteral nutrition promotes bacterial translocation from the gut. Surgery. 1988;104(2):185–90.

    CAS  PubMed  Google Scholar 

  • Bakker GC, et al. An anti-inflammatory dietary mix modulates inflammation and oxidative and metabolic stress in overweight men: a nutrigenomics approach. Am J Clin Nutr. 2010;91(4):1044–59.

    Article  CAS  PubMed  Google Scholar 

  • Borovikova LV, et al. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature. 2000;405(6785):458–62.

    Article  CAS  PubMed  Google Scholar 

  • Braxton CC, et al. Parenteral nutrition alters monocyte TNF receptor activity. J Surg Res. 1995;59(1):23–8.

    Article  CAS  PubMed  Google Scholar 

  • Czura CJ, et al. Vagus nerve stimulation regulates homeostasis in swine. Shock. 2010;33(6):608–13.

    Article  PubMed Central  PubMed  Google Scholar 

  • De AK, Laudanski K, Miller-Graziano CL. Failure of monocytes of trauma patients to convert to immature dendritic cells is related to preferential macrophage-colony-stimulating factor-driven macrophage differentiation. J Immunol. 2003;170(12):6355–62.

    Article  CAS  PubMed  Google Scholar 

  • Dixit VD, et al. Ghrelin inhibits leptin- and activation-induced proinflammatory cytokine expression by human monocytes and T cells. J Clin Invest. 2004;114(1):57–66.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Doig GS, et al. Early parenteral nutrition in critically ill patients with short-term relative contraindications to early enteral nutrition: a randomized controlled trial. JAMA. 2013;309(20):2130–8.

    Article  CAS  PubMed  Google Scholar 

  • Fong YM, et al. Total parenteral nutrition and bowel rest modify the metabolic response to endotoxin in humans. Ann Surg. 1989;210(4):449–56.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gale SC, et al. Continuous enteral and parenteral feeding each reduce heart rate variability but differentially influence monocyte gene expression in humans. Shock. 2012;38(3):255–61.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Genton L, et al. The C-terminal heptapeptide of bombesin reduces the deleterious effect of total parenteral nutrition (TPN) on gut-associated lymphoid tissue (GALT) mass but not intestinal immunoglobulin A in vivo. J Parenter Enter Nutr. 2004;28(6):431–4.

    Article  CAS  Google Scholar 

  • Hagiwara S, et al. Comparison of effects of total enteral versus total parenteral nutrition on ischemia/reperfusion-induced heart injury in rats. Eur Surg Res. 2008;40(4):361–7.

    Article  CAS  PubMed  Google Scholar 

  • Heneghan AF, et al. Parenteral nutrition decreases paneth cell function and intestinal bactericidal activity while increasing susceptibility to bacterial enteroinvasion. J Parenter Enteral Nutr. 2013;38(7):817–24.

    Google Scholar 

  • Ikeda T, et al. Up-regulation of intestinal toll-like receptors and cytokines expressions change after TPN administration and a lack of enteral feeding. J Surg Res. 2010;160(2):244–52.

    Article  CAS  PubMed  Google Scholar 

  • Kang W, et al. Parenteral nutrition impairs gut-associated lymphoid tissue and mucosal immunity by reducing lymphotoxin Beta receptor expression. Ann Surg. 2006;244(3):392–9.

    PubMed Central  PubMed  Google Scholar 

  • Kudsk KA, et al. Enteral and parenteral feeding influences mortality after hemoglobin-E. coli peritonitis in normal rats. J Trauma. 1983;23(7):605–9.

    Article  CAS  PubMed  Google Scholar 

  • Laudanski K, et al. Cell-specific expression and pathway analyses reveal alterations in trauma-related human T cell and monocyte pathways. Proc Natl Acad Sci. 2006;103(42):15564–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lin MT, et al. Route of nutritional supply influences local, systemic, and remote organ responses to intraperitoneal bacterial challenge. Ann Surg. 1996;223(1):84–93.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lubbers T, et al. Lipid-rich enteral nutrition reduces postoperative ileus in rats via activation of cholecystokinin-receptors. Ann Surg. 2009;249(3):481–7.

    Article  PubMed  Google Scholar 

  • Luyer MD, et al. Nutritional stimulation of cholecystokinin receptors inhibits inflammation via the vagus nerve. J Exp Med. 2005;2002(8):1023–9.

    Article  Google Scholar 

  • Mochizuki H, et al. Mechanism of prevention of postburn hypermetabolism and catabolism by early enteral feeding. Ann Surg. 1984;200(3):297–310.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Moore FA, et al. Early enteral feeding, compared with parenteral, reduces postoperative septic complications. The results of a meta-analysis. Ann Surg. 1992;216(2):172–83.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Moriya T, et al. The effect of adding fish oil to parenteral nutrition on hepatic mononuclear cell function and survival after intraportal bacterial challenge in mice. Surgery. 2012;151(5):745–55.

    Article  PubMed  Google Scholar 

  • Neal MD, et al. Enterocyte TLR4 mediates phagocytosis and translocation of bacteria across the intestinal barrier. J Immunol. 2006;176(5):3070–9.

    Article  CAS  PubMed  Google Scholar 

  • O’Dwyer ST, et al. A single dose of endotoxin increased intestinal permeability in healthy humans. Arch Surg. 1988;123(12):1459–64.

    Article  PubMed  Google Scholar 

  • O’Leary MJ, et al. Parenteral versus enteral nutrition: effect on serum cytokines and the hepatic expression of mRNA of suppressor cytokine signaling proteins, insulin-like growth factor-1 and the growth hormone receptor in rodent sepsis. Crit Care. 2007;11(4):R79.

    Article  PubMed Central  PubMed  Google Scholar 

  • Omata J, et al. Parenteral nutrition suppresses the bactericidal response of the small intestine. Surgery. 2013;153(1):17–24.

    Article  PubMed Central  PubMed  Google Scholar 

  • Peterson VM, et al. Total enteral nutrition versus total parenteral nutrition after major torso injury: attenuation of hepatic protein reprioritization. Surgery. 1988;104(2):199–207.

    CAS  PubMed  Google Scholar 

  • Phelps SJ, et al. Toxicities of parenteral nutrition in the critically ill patient. Crit Care Clin. 1991;7(3):725–53.

    CAS  PubMed  Google Scholar 

  • Qader SS, et al. Long-term infusion of nutrients (total parenteral nutrition) suppresses circulating ghrelin in food-deprived rats. Regul Pept. 2005;131(1–3):82–8.

    Article  CAS  PubMed  Google Scholar 

  • Santos AA, et al. Does the route of feeding modify the inflammatory response? Ann Surg. 1994;220(2):155–63.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Takagi K, et al. Modulating effects of the feeding route on stress response and endotoxin translocation in severely stressed patients receiving thoracic esophagectomy. Nutrition. 2000;16(5):355–60.

    Article  CAS  PubMed  Google Scholar 

  • Tracey KJ. The inflammatory reflex. Nature. 2002;420(6917):853–9.

    Article  CAS  PubMed  Google Scholar 

  • Tracey KJ. Reflex control of immunity. Nat Rev Immunol. 2009;9(6):418–28.

    Article  CAS  PubMed  Google Scholar 

  • Tracey KJ, Lowry SF. The role of cytokine mediators in septic shock. Adv Surg. 1990;23:21–56.

    CAS  PubMed  Google Scholar 

  • Van der Poll T, et al. Endotoxin induces downregulation of tumor necrosis factor receptors on circulating monocytes and granulocytes in humans. Blood. 1995;86(7):2754–9.

    PubMed  Google Scholar 

  • Van Erk MJ, et al. High-protein and high-carbohydrate breakfasts differentially change the transcriptome of human blood cells. Am J Clin Nutr. 2006;84(5):1233–41.

    PubMed  Google Scholar 

  • Van Zoelen MA, et al. Roll of toll-like receptors 2 and 4, and the receptor for advanced glycation end products (RAGE) in Hmgb1 induced inflammation in vivo. Shock. 2009;31(3):280–4.

    Article  PubMed  Google Scholar 

  • Wang H, et al. Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature. 2003;421(6921):384–8.

    Article  CAS  PubMed  Google Scholar 

  • Wildhaber BE, et al. Gene alteration of intestinal intraepithelial lymphocytes with administration of total parenteral nutrition. J Pediatr Surg. 2003;38(6):840–3.

    Article  PubMed  Google Scholar 

  • Wolfs TG, et al. Increased release of sMD-2 during human endotoxemia and sepsis: a role for endothelial cells. Mol Immunol. 2008;45(11):3268–77.

    Article  CAS  PubMed  Google Scholar 

  • Yang H, et al. Intestinal intraepithelial lymphocyte gamma delta-T cell-derived keratinocyte growth factor modulates epithelial growth in the mouse. J Immunol. 2004;172(7):4151–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dena Arumugam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Arumugam, D., Gale, S.C., Calvano, S.E. (2014). Enteral and Parenteral Feeding and Monocyte Gene Expression in Critically Ill Patients. In: Rajendram, R., Preedy, V., Patel, V. (eds) Diet and Nutrition in Critical Care. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8503-2_115-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8503-2_115-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-8503-2

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics