Skip to main content

Spatiotemporal Interpolation Algorithms

  • Reference work entry
  • First Online:
Encyclopedia of Database Systems
  • 13 Accesses

Synonyms

Moving objects interpolation; Spatiotemporal approximation; Spatiotemporal estimation

Definition

Spatiotemporal interpolation is the problem of estimating the unknown values of some property at arbitrary spatial locations and times, using the known values at spatial locations and times where measurements were made. In spatiotemporal interpolation the estimated property varies with both space and time, with the assumption that the values are closer to each other with decreasing spatial and temporal distances.

Spatiotemporal interpolation is used in spatiotemporal databases, which record spatial locations and time instances together with other attributes that are dependent on space and time. For example, a spatiotemporal database may record the sales of houses in a town. The house sales database records the location, usually as the address of the house from which an (x, y) location can be easily found, by correlating the address with a map of the town, the calendar date when...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 4,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 6,499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Recommended Reading

  1. Davis PJ. Interpolation and approximation. Mineola: Dover; 1975.

    MATH  Google Scholar 

  2. Güting R, Schneider M. Moving objects databases. Los Altos: Morgan Kaufmann; 2005.

    MATH  Google Scholar 

  3. Revesz PZ. Introduction to databases: from spatio-temporal to biological. New York: Springer; 2010.

    Book  MATH  Google Scholar 

  4. Li L, Revesz PZ. Interpolation methods for spatiotemporal geographic data. J Comput Environ Urban Syst. 2004;28(3):201–27.

    Article  Google Scholar 

  5. Gao J, Revesz P. Adaptive spatiotemporal interpolation methods. In: Proceedings of the 1st International Conference on Geometric Modeling, Visualization, and Graphics; 2005. p. 1622–5.

    Google Scholar 

  6. Hadjieleftheriou M, Kollios G, Tsotras VJ, Gunopulos D. Efficient indexing of spatiotemporal objects. In: Advances in Database Technology, Proceedings of the 8th International Conference on Extending Database Technology; 2002. p. 251–68.

    Chapter  Google Scholar 

  7. Koubarakis M, Sellis TK, Frank AU, Grumbach S, Güting RH, Jensen CS, Lorentzos NA, Manolopoulos Y, Nardelli E, Pernici B, Schek H-J, Scholl M, Theodoulidis B, Tryfona N, editors. Spatio-temporal databases: the CHOROCHRONOS approach, LNCS 2520. Berlin/New York: Springer; 2003.

    MATH  Google Scholar 

  8. Ni J, Ravishankar CV. Indexing spatio-temporal trajectories with efficient polynomial approximations. IEEE Trans Knowl Data Eng. 2007;19(5):663–78.

    Article  Google Scholar 

  9. Yu B, Kim SH, Bailey T, Gamboa R. Curve-based representation of moving object trajectories. In: Proceedings of the 8th International Database Engineering and Applications Symposium; 2004. p. 419–25.

    Google Scholar 

  10. Shepard DA. A two-dimensional interpolation function for irregularly spaced data. In: Proceedings of the 23rd ACM National Conference; 1968. p. 517–24.

    Google Scholar 

  11. Kuijpers B, Othman W. Trajectory databases: data models, uncertainty and complete query languages. In: Proceedings of the 11th International Conference on Database Theory; 2007. p. 224–38.

    Google Scholar 

  12. Pfoser D, Jensen C.S. Capturing the uncertainty of moving-object representations. In: Proceedings of the 6th International Symposium on Advances in Spatial Databases; 1999. p. 111–32.

    Chapter  Google Scholar 

  13. Trajcevski G, Wolfson O, Zhang F, Chamberlain S. The geometry of uncertainty in moving objects databases. In: Advances in Database Technology, Proceedings of the 8th International Conference on Extending Database Technology; 2002. p. 233–50.

    Chapter  MATH  Google Scholar 

  14. Revesz PZ, Wu S. Spatiotemporal reasoning about epidemiological data. Artif Intell Med. 2006;38(2):157–70.

    Article  Google Scholar 

  15. Li L, Zhang X, Holt JB, Tian J, Piltner R. Estimating population exposure to fine particulate matter in the conterminous U.S. using shape function-based spatiotemporal interpolation method: a county level analysis. Int J Comput. 2012;1(4):24–30.

    Google Scholar 

  16. Li L, Zhang X, Piltner R. A spatiotemporal database for ozone in the conterminous U.S. In: Proceedings of the 13th International Symposium on Temporal Representation and Reasoning, Budapest Hungary; 2006. p. 168–76.

    Google Scholar 

  17. Li L, Zhang X, Piltner R. An application of the shape function based spatiotemporal interpolation method on ozone and population exposure in the contiguous U.S. J Environ Inf. 2008;12(2):120–8.

    Article  Google Scholar 

  18. Losser T, Li L, Piltner R. A spatiotemporal interpolation method using radial basis functions for geospatiotemporal big data. In: Proceedings of the 5th International Conference on Computing for Geospatial Research and Application; 2014.

    Google Scholar 

  19. Gao J, Revesz P. Voting prediction using new spatiotemporal interpolation methods. In: Proceedings of the 7th International Conference on Digital Government Research; 2006. p. 293–300.

    Google Scholar 

  20. Kanellakis PC, Kuper GM, Revesz PZ. Constraint query languages. J Comput Syst Sci. 1995;51(1):26–52.

    Article  MathSciNet  Google Scholar 

  21. Grumbach S, Rigaux P, Segoufin L. Manipulating interpolated data is easier than you thought. In: Proceedings of the 26th International Conference on Very Large Data Bases; 2000. p. 156–65.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Revesz .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Revesz, P. (2018). Spatiotemporal Interpolation Algorithms. In: Liu, L., Özsu, M.T. (eds) Encyclopedia of Database Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8265-9_803

Download citation

Publish with us

Policies and ethics