Encyclopedia of Database Systems

2018 Edition
| Editors: Ling Liu, M. Tamer Özsu

Active, Real-Time, and Intellective Data Warehousing

  • Mukesh MohaniaEmail author
  • Ullas Nambiar
  • Hoang Tam Vo
  • Michael Schrefl
  • Millist Vincent
Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-8265-9_8


Right-time data warehousing


Active data warehousing is the technical ability to capture transactions when they change and integrate them into the warehouse, along with maintaining batch or scheduled cycle refreshes. An active data warehouse offers the possibility of automating routine tasks and decisions. The active data warehouse exports decisions automatically to the online transaction processing (OLTP) systems.

Real-time data warehousing describes a system that reflects the state of the source systems in real time. If a query is run against the real-time data warehouse to understand a particular facet about the business or entity described by the warehouse, the answer reflects the fully up-to-date state of that entity. Most data warehouses have data that are highly latent and thus reflect the business at a point in the past. In contrast, a real-time data warehouse has low latency data and provides current (or real-time) data.

Simply put, a real-time data...

This is a preview of subscription content, log in to check access.

Recommended Reading

  1. 1.
    Kimball R, Strethlo K. Why decision support fails and how to fit it. ACM SIGMOD Rec. 1995;24(3):91–7.CrossRefGoogle Scholar
  2. 2.
    Golfarelli M, Maio D, Rizzi S. Conceptual design of data warehouses from E/R schemes. In: Proceedings of the 31st Annual Hawaii International Conference on System Sciences; 1998. p. 334–43.Google Scholar
  3. 3.
    Lehner W. Modeling large scale OLAP scenarios. In: Advances in database technology. In: Proceedings of the 6th International Conference on Extending Database Technology; 1998. p. 153–67.Google Scholar
  4. 4.
    Samtani S, Mohania M, Kumar V, Kambayashi Y. Recent advances and research problems in data warehousing. In: Proceedings of the Workshops on Data Warehousing and Data Mining: Advances in Database Technologies; 1998. p. 81–92.CrossRefGoogle Scholar
  5. 5.
    Pedersen TB, Jensen CS. Multidimensional data modeling for complex data. In: Proceedings of the 15th International Conference on Data Engineering; 1999. p. 336–45.Google Scholar
  6. 6.
    Vassiliadis P. Modeling multidimensional databases, cubes and cube operations. In: Proceedings of the 10th International Conference on Scientific and Statistical Database Management; 1998. p. 53–62.Google Scholar
  7. 7.
    Mohania M, Samtani S, Roddick J, Kambayashi Y. Advances and research directions in data-warehousing technology. Australas J Inf Syst. 1999;7(1):2.Google Scholar
  8. 8.
    Thalhammer T, Schrefl M, Mohania M. Active data warehouses: complementing OLAP with analysis rules. Data Knowl Eng. 2001;39(3):241–69.zbMATHCrossRefGoogle Scholar
  9. 9.
    ACT-NET Consortium. The active database management system manifesto: a rulebase of ADBMS features. ACM SIGMOD Rec. 1996;25(3).Google Scholar
  10. 10.
    Simon E, Dittrich A. Promises and realities of active database systems. In: Proceedings of the 21th International Conference on Very Large Data Bases; 1995. p. 642–53.Google Scholar
  11. 11.
    Brobst S. Active data warehousing: a new breed of decision support. In: Proceedings of the 13th International Workshop on Data and Expert System Applications; 2002. p. 769–72.Google Scholar
  12. 12.
    Borbst S, Rarey J. The five stages of an active data warehouse evolution. Teradata Mag. 2001;3(1):38–44.Google Scholar
  13. 13.
  14. 14.
    Best practices for Real-time Data Warehousing. An oracle white paper. 2014. http://www.oracle.com/us/products/middleware/data-integration/realtime-data-warehousing-bp-2167237.pdf
  15. 15.
    Kimball R, Caserta J. The data warehouse ETL toolkit: practical techniques for extracting, cleaning, conforming, and delivering data. Wiley; 2004.Google Scholar
  16. 16.
    Linthicum RS. Enterprise application integration. Addison-Wesley; 1999.Google Scholar
  17. 17.
    Improving SOA with Goldengate TDM Technology. GoldenGate White Paper; 2007.Google Scholar
  18. 18.
    Langseth J. Real-time data warehousing: challenges and solutions. DSSResources.COM; 2004.Google Scholar
  19. 19.
    Paton NW, Diaz O. Active database systems. ACM Comput Surv. 1999; 31(1):63–103.CrossRefGoogle Scholar
  20. 20.
    High R. The era of cognitive systems: an inside look at IBM Watson and how it works. IBM Corporation Redbooks; 2012.Google Scholar
  21. 21.
    Abadi D, Agrawal R, Ailamaki A, Balazinska M, Bernstein P, Carey M, Chaudhuri S, Dean J, Doan A, Franklin M, Gehrke J, Haas L, Halevy A, Hellerstein J, Ioannidis Y, Jagadish H, Kossmann D, Madden S, Mehrotra S, Milo T, Naughton J, Ramakrishnan R, Markl V, Olston C, Ooi BC, Re C, Suciu D, Stonebraker M, Walter T, Widom J. The Beckman report on database research. Commun ACM. 2016;59(2):92–9.CrossRefGoogle Scholar
  22. 22.
    Jonas J, Sokol L. Data finds data, Chapter 7. In: Segaran T, Hammerbacher J, editors. Beautiful data: the stories behind elegant data solutions. O’Reilly Media; 2009.Google Scholar
  23. 23.
    Chirigati F, Liu J, Korn F, Wu YW, Yu C, Zhang H. Knowledge exploration using tables on the web. PVLDB. 2016;10(3):193–204.Google Scholar
  24. 24.
    Thomsen C, Pedersen TB, Lehner W. RiTE: providing on-demand data for right-time data warehousing. In: Proceedings of the IEEE 24th International Conference on Data Engineering; 2008. p. 456–65.Google Scholar
  25. 25.
    Agrawal D. The reality of real-time business intelligence. In: Castellanos M, Dayal U, Sellis T, editors. Proceedings of the 2nd International Workshop on Business Intelligence for the Real-Time Enterprise; 2009. p. 75–88.Google Scholar
  26. 26.
    Cao Y., Chen C., Guo F., Jiang D., Lin Y., Ooi B. C., Vo H. T., Wu S., Xu Q. ES2: a cloud data storage system for supporting both OLTP and OLAP. In: Proceedings of the 27th International Conference on Data Engineering; 2011. p. 291–302.Google Scholar
  27. 27.
    Kemper A, Neumann T. HyPer: a hybrid OLTP and OLAP main memory database system based on virtual memory snapshots. In: Proceedings of the 27th International Conference on Data Engineering; 2011. p. 195–206.Google Scholar
  28. 28.
    Sikka V, Färber F, Lehner W, Cha SK, Peh T, Bornhövd C. Efficient transaction processing in SAP HANA database: the end of a column store myth. In: Proceedings of the ACM SIGMOD International Conference on Management of Data; 2012. p. 731–42.Google Scholar
  29. 29.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Mukesh Mohania
    • 1
    Email author
  • Ullas Nambiar
    • 2
  • Hoang Tam Vo
    • 1
  • Michael Schrefl
    • 3
  • Millist Vincent
    • 4
  1. 1.IBM ResearchMelbourneAustralia
  2. 2.Zensar Technologies LtdPuneIndia
  3. 3.University of LinzLinzAustria
  4. 4.University of South AustraliaAdelaideAustralia

Section editors and affiliations

  • Torben Bach Pedersen
    • 1
  • Stefano Rizzi
    • 2
  1. 1.Department of Computer ScienceAalborg UniversityAalborgDenmark
  2. 2.DISI – University of BolognaBolognaItaly