Encyclopedia of Database Systems

2018 Edition
| Editors: Ling Liu, M. Tamer Özsu

Transaction-Time Indexing

  • Mirella M. MoroEmail author
  • Vassilis J. Tsotras
Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-8265-9_399


Transaction-time access methods


A transaction-time index is a temporal index that enables fast access to transaction-time datasets. In a traditional database, an index is used for selection queries. When accessing transaction-time databases, selection queries also involve the transaction-time dimension. The characteristics of the transaction-time axis imply various properties that such temporal index should have to be efficient. As with traditional indices, the performance is described by three costs: (i) storage cost (i.e., the number of pages the index occupies on the disk), (ii) update cost (the number of pages accessed to perform an update on the index, for example, when adding, deleting, or updating a record), and (iii) query cost (the number of pages accessed for the index to answer a query).

Historical Background

Most of the early work on temporal indexing has concentrated on providing solutions for transaction-time databases. A basic property of transaction...

This is a preview of subscription content, log in to check access.

Recommended Reading

  1. 1.
    Becker B, Gschwind S, Ohler T, Seeger B, Widmayer P. An asymptotically optimal multiversion B-tree. VLDB J. 1996;5(4):264–75.CrossRefGoogle Scholar
  2. 2.
    Burton FW, Huntbach MM, Kollias JG. Multiple generation text files using overlapping tree structures. Comput J. 1985;28(4):414–6.CrossRefGoogle Scholar
  3. 3.
    Carey MJ, DeWitt DJ, Richardson JE, Shekita EJ. Object and file management in the EXODUS extensible database system. In: Proceedings of the 12th International Conference on Very Large Data Bases; 1986. p. 91–100.Google Scholar
  4. 4.
    Driscoll JR, Sarnak N, Sleator DD, Tarjan RE. Making data structures persistent. J Comput Syst Sci. 1989;38(1):86–124.MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Easton MC. Key-sequence data sets on inedible storage. IBM J Res Dev. 1986;30(3):230–41.CrossRefGoogle Scholar
  6. 6.
    Lomet D, Salzberg B. Access methods for multiversion data. In: Proceedings of the ACM SIGMOD International Conference on Management of Data; 1989. p. 315–24.Google Scholar
  7. 7.
    Salzberg B, Tsotras VJ. A comparison of access methods for time-evolving data. ACM Comput Surv. 1999;31(2):158–221.CrossRefGoogle Scholar
  8. 8.
    Snodgrass RT, Ahn I. Temporal databases. IEEE Comput. 1986;19(9):35–42.zbMATHCrossRefGoogle Scholar
  9. 9.
    Tsotras VJ, Kangelaris N. The snapshot index: an I/O-optimal access method for timeslice queries. Inf Syst. 1995;20(3):237–60.CrossRefGoogle Scholar
  10. 10.
    Tzouramanis T, Manolopoulos Y, Lorentzos NA. Overlapping B+-trees: an implementation of a transaction time access method. Data Knowl Eng. 1999;29(3):381–404.zbMATHCrossRefGoogle Scholar
  11. 11.
    Varman PJ, Verma RM. An efficient multiversion access structure. IEEE Trans Knowl Data Eng. 1997;9(3):391–409.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departamento de Ciencia da ComputaçaoUniversidade Federal de Minas Gerais – UFMGBelo HorizonteBrazil
  2. 2.University of California-RiversideRiversideUSA

Section editors and affiliations

  • Richard T. Snodgrass
    • 1
  • Christian S. Jensen
    • 2
  1. 1.University of ArizonaTucsonUSA
  2. 2.Aalborg UniversityAalborg ØstDenmark