Encyclopedia of Database Systems

2018 Edition
| Editors: Ling Liu, M. Tamer Özsu

Image Metadata

  • Frank NackEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-8265-9_1521


Image representation; Pictorial metadata; Picture metadata


A digital image is a representation of a two- or three-dimensional image, where the representation can be of vector or raster type.

Metadata is data about data of any sort in any media, describing an individual datum, content item, or a collection of data including multiple content items. In that way, metadata facilitates the understanding, characteristics, use and management of data.

Image metadata is structured, encoded data that describes content and representation characteristics of information-baring image entities to facilitate the automatic or semiautomatic identification, discovery, assessment, and management of the described entities, as well as their generation, manipulation, and distribution.

Historical Background

Many of the techniques of digital image processing were developed in the 1960s at, among others, the MIT, Bell Labs, and the University of Maryland. These works tried to automatically...

This is a preview of subscription content, log in to check access.

Recommended Reading

  1. 1.
    Ahern S, Davis M, Eckles D, King S, Naaman M, Nair R, Spasojevic M, Hui-I Yang J. ZoneTag: designing context-aware mobile media capture to increase participation. In: Proceedings of the Pervasive Image Capture and Sharing: New Social Practices and Implications for Technology Workshop; 2006.Google Scholar
  2. 2.
    Blasser A, editor. Database techniques for pictorial applications. Lecture notes in computer science, vol. 81. London: Springer; 1979.Google Scholar
  3. 3.
    Burkhardt H, Siggelkow S. Invariant features for discriminating between equivalence classes. Nonlinear model-based image video processing and analysis. New York: Wiley; 2001. p. 269–307.Google Scholar
  4. 4.
    Cox IJ, Miller ML, Minka TP, Papathomas TV. The Bayesian image retrieval system, picHunter: theory, implementation, and pychophysical experiments. IEEE Trans Image Process. 2000;9(1):20–37.CrossRefGoogle Scholar
  5. 5.
    Davis M. Active capture: integrating human-computer interaction and computer vision/audition to automate media capture. In: Proceedings of the IEEE International Conference on Multimedia and Expo; 2003.Google Scholar
  6. 6.
    Dorai C, Venkatesh S. Bridging the semantic gap in content management systems – computational media aesthetics. In: Dorai C, Venkatesh S, editors. Media computing computational media aesthetics. Boston: Kluwer; 2002.Google Scholar
  7. 7.
    Eco U. Articulations of the cinematic code. In: Nichols B, editor. Movies and methods. Berkeley: University of California Press; 1976. p. 590–607.Google Scholar
  8. 8.
    Frederix G, Caenen G, Pauwels EJ. PARISS: panoramic, adaptive and reconfigurable interface for similarity search. In: Proceedings of the International Conference Image Processing; 2000. p. 222–5.Google Scholar
  9. 9.
    Hardman L, Obrenovic Z, Nack F, Kerherve B, Piersol K. Canonical processes of semantically annotated media production. Multimedia Systems. 2008;14(6):327–40.CrossRefGoogle Scholar
  10. 10.
    Hollink L. Semantic annotation for retrieval of visual resaources. Ph.D thesis, Vrije Universiteit, Amsterdam.Google Scholar
  11. 11.
    Lin HC, Wang LL, Yang SN. Color image retrieval based on hidden Markov models. IEEE Trans Image Process. 1997;6(2):332–9.CrossRefGoogle Scholar
  12. 12.
    Reference.Google Scholar
  13. 13.
    Nack F, Windhouwer M, Hardman L, Pauwels E, Huijberts M. The role of highlevel and lowlevel features in style-based retrieval and generation of multimedia presentations. New Rev Hypermedia Multimed. 2001;7(1):7–37.CrossRefGoogle Scholar
  14. 14.
    Smeulders AWM, Worring M, Santini S, Gupta A, Jain R. Content-based image retrieval: the end of the early years. IEEE Trans Pattern Anal Mach Intell. 2000;22(12):1349–80.CrossRefGoogle Scholar
  15. 15.
    Smith SM, Brady JM. SUSANÐA new approach to low level image processing. Int J Comput Vis. 1997;23(1):45–78.CrossRefGoogle Scholar
  16. 16.
    Swain MJ. Searching for multimedia on the World Wide Web, icms. In: Proceedings of the International Conference on Multimedia Computing and Systems; 1999. p. 32–7.Google Scholar
  17. 17.
    Swain MJ, Ballard BH. Color indexing. Int J Comput Vis. 1991;7(1):11–32.CrossRefGoogle Scholar
  18. 18.
    The Dublin core metadata initiative. Available at: http://www.dublincore.org/. Accessed 12 Oct 2008.
  19. 19.
    Weber M, Welling M, Perona P. Towards automatic discovery of object categories. In: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition; 2000. p. 2101–8.Google Scholar
  20. 20.
    W3C multimedia incubator group. Available at: http://www.w3.org/2005/incubator/mmsem/. Accessed 12 Oct 2008.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of AmsterdamAmsterdamThe Netherlands

Section editors and affiliations

  • Vincent Oria
    • 1
  • Shin'ichi Satoh
    • 2
  1. 1.Dept. of Computer ScienceNew Jersey Inst. of TechnologyNewarkUSA
  2. 2.Digital Content and Media Sciences ReseaMultimedia Information Research DivisionNational Institute of InformaticsTokyoJapan