Skip to main content

Visual Clustering

  • Reference work entry
  • First Online:
Encyclopedia of Database Systems
  • 160 Accesses

Synonyms

Visual data mining; Visual mining

Definition

Synthesis of computational methods and interactive visualization techniques that represents a clustering structure, defined in higher dimensions to the human analyst in order to support the human analyst to explore and refine the clustering structure of high dimensional data spaces based on his/her domain knowledge.

Historical Background

The advancements made in computing technology over the last two decades allow both scientific and business applications to produce large data sets with increasing complexity and dimensionality. Automated clustering algorithms are indispensable for analyzing large n-dimensional data sets but often fall short to provide completely satisfactory results in terms of quality, meaningfulness, and relevance of the revealed clusters. With the increasing graphics capabilities of the available computers, researchers realized that an integration of the human into the clustering process based on visual feedbacks...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 4,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 6,499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Recommended Reading

  1. Aggarwal CC. A human-computer interactive method for projected clustering. IEEE Trans Knowl Data Eng. 2004;16(4):448–60.

    Article  Google Scholar 

  2. Ankerst M, Breunig MM, Kriegel HP, and Sander J. OPTICS: ordering points to identify the clustering structure. In: Proceedings of the ACM SIGMOD International Conference on Management of Data; 1999. p. 49–60.

    Google Scholar 

  3. Asimov D. The grand tour: a tool for viewing multidimensional data. SIAM J Sci Stat Comp. 1985;6(1):128–43.

    Article  MathSciNet  MATH  Google Scholar 

  4. Cook D, Swayne DF. Interactive and dynamic graphics for data analysis – with R and Ggobi. New York: Springer Science and Business Media; 2007.

    Book  MATH  Google Scholar 

  5. Dhillon IS, Modha DS, Spangler WS. Visualizing class structure of multidimensional data. In: Proceedings of the 30th Symposium on the Interface: Computing Science and Statistics; 1998. p. 488–93.

    Google Scholar 

  6. Ester M, Kriegel HP, Sander J, Xu X. A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining; 1996. p. 226–31.

    Google Scholar 

  7. Guo D. Coordinating computational and visual approaches for interactive feature selection and multivariate clustering. Inf Vis. 2003;2(4):232–46.

    Article  MathSciNet  Google Scholar 

  8. Hinneburg A, Keim DA. Optimal grid-clustering: towards breaking the curse of dimensionality in high-dimensional clustering. In: Proceedings of the 25th International Conference on Very Large Data Bases; 1999. p. 506–17.

    Google Scholar 

  9. Hinneburg A, Keim DA, Wawryniuk M. HD-Eye: visual mining of high-dimensional data. IEEE Comput Graph Appl. 1999;19(5):22–31.

    Article  Google Scholar 

  10. Kohonen T. Self-organizing maps. third ed. Berlin: Springer Series in Information Science; 2001.

    Book  MATH  Google Scholar 

  11. Koren Y, Carmel L. Robust linear dimensionality reduction. IEEE Trans Vis Comput Graph. 2004;10(4):459–70.

    Article  Google Scholar 

  12. Kraaijveld M, Mao J, Jain A. A nonlinear projection method based on kohonen’s topology preserving maps. IEEE Trans Neural Netw. 1995;6(3):548–59.

    Article  Google Scholar 

  13. Nam EJ, Han Y, Mueller K, Zelenyuk A, Imre D. ClusterSculptor: a visual analytics tool for high-dimensional data. In: IEEE Symposium on Visual Analytics Science and Technology; 2007. p. 75–82.

    Google Scholar 

  14. Vesanto J. Som-based data visualization methods. Intell Data Anal. 1999;2(3):111–26.

    Article  MATH  Google Scholar 

  15. Yang L. Interactive exploration of very large relational datasets through 3D dynamic projections. In: Proceedings of the 6th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; 2000. p. 236–43.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mike Sips .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Sips, M. (2018). Visual Clustering. In: Liu, L., Özsu, M.T. (eds) Encyclopedia of Database Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8265-9_1124

Download citation

Publish with us

Policies and ethics