Encyclopedia of Database Systems

2018 Edition
| Editors: Ling Liu, M. Tamer Özsu

Automatic Image Annotation

  • Nicolas HervéEmail author
  • Nozha Boujemaa
Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-8265-9_1010


Auto-annotation; Image classification; Multimedia content enrichment; Object detection and recognition


The widespread search engines, in the professional as well as the personal context, used to work on the basis of textual information associated or extracted from indexed documents. Nowadays, most of the exchanged or stored documents have multimedia content. To reduce the technological gap so that these engines still can work on multimedia content, it is very convenient developing methods capable to generate automatically textual annotations and metadata. These methods will then allow to enrich the upcoming new content or to post-annotate the existing content with additional information extracted automatically if ever this existing content is partly or not annotated.

A broad diversity in the typology of manual annotation is usually found in image databases. Part of them is representing contextual information. The author, date, place or technical shooting conditions...

This is a preview of subscription content, log in to check access.

Recommended Reading

  1. 1.
    Smeulders AWM, Worring M, Santini S, Gupta A, Jain R. Content-based image retrieval at the end of the early years. IEEE Trans Pattern Analy Machine Intell. 2000;22(12):1349–80.CrossRefGoogle Scholar
  2. 2.
    Boujemaa N., Fauqueur J., and Gouet V. What’s beyond query by example? Technical report, INRIA; 2003.Google Scholar
  3. 3.
    Hare JS, Lewis PH, Enser PGB, Sandom CJ. Mind the gap: another look at the problem of the semantic gap in image retrieval. In: Proceedings of the SPIE: Multimedia Content Analysis, Management, and Retrieval; 2006.Google Scholar
  4. 4.
    Boujemaa N, Fauqueur J, Ferecatu M, Fleuret F, Gouet V, Le Saux B, Sahbi H. Ikona: interactive specific and generic image retrieval. In: Proceedings of the International Workshop on Multimedia Content-Based Indexing and Retrieval; 2001. Available at: http://www-rocg.inria.fr/imedia/mmcbirzod.html.
  5. 5.
    Szummer M, Picard RW. Indoor-outdoor image classification. In: Proceedings of the Workshop on Content-Based Access to Image and Video Databases; 1998.Google Scholar
  6. 6.
    Vailaya A, Jain A, Zhang H-J. On image classification: city images vs. landscapes. Pattern Recogn J. 1998;31(12):1921–35.CrossRefGoogle Scholar
  7. 7.
    Enser PGB, Sandom CJ, Lewis PH. Automatic annotation of images from the practitioner perspective. In: Proceedings of the 4th International Conference. Image and Video Retrieval; 2005. p. 497–506.Google Scholar
  8. 8.
    Datta R, Li J, Wang JZ. Content-based image retrieval – approaches and trends of the new age. In: Proceedings of the 7th ACM SIGMM International Workshop on Multimedia Information Retrieval; 2005. p. 253–62.Google Scholar
  9. 9.
    Hanjalic A, Sebe N, Chang E. Multimedia content analysis, management and retrieval: trends and challenges. In: Proceedings of the SPIE: Multimedia Content Analysis, Management, and Retrieval; 2006.Google Scholar
  10. 10.
    Lew MS, Sebe N, Djeraba C, Jain R. Content-based multimedia information retrieval: state of the art and challenges. ACM Trans Multimedia Comp Comm Appl. 2006;2(1):1–19.CrossRefGoogle Scholar
  11. 11.
    Ponce J, Hebert M, Schmid C, Zisserman A, editors. Toward category-level object recognition, Lecture notes in computer science. New York: Springer;2006.Google Scholar
  12. 12.
    Hervé N, Boujemaa N. Image annotation: which approach for realistic databases? In: Proceedings of the 6th ACM International Conference Image and Video Retrieval; 2007. p. 170–7.Google Scholar
  13. 13.
    Barnard K, Duygulu P, Forsyth D, de Freitas N, Blei DM, Jordan MI. Matching words and pictures. J Mach Learn Res. 2003;3(6):1107–35.zbMATHGoogle Scholar
  14. 14.
    Opelt A, Pinz A, Fussenegger M, Auer P. Generic object recognition with boosting. Pattern Anal Mach Intell. 2006;28(3):416–31.zbMATHCrossRefGoogle Scholar
  15. 15.
    Zhang J, Marszalek M, Lazebnik S, Schmid C. Local features and kernels for classification of texture and object categories: a comprehensive study. Int J Comput Vis. 2007;73(2):213–38.CrossRefGoogle Scholar
  16. 16.
    Amores J, Sebe N, Radeva P. Context-based object-class recognition and retrieval by generalized correlograms. IEEE Trans Pattern Anal Mach Intell. 2007;29(10):1818–33.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.INRIA Paris-RocquencourtLe ChesnayFrance

Section editors and affiliations

  • Vincent Oria
    • 1
  • Shin'ichi Satoh
    • 2
  1. 1.Dept. of Computer ScienceNew Jersey Inst. of TechnologyNewarkUSA
  2. 2.Digital Content and Media Sciences ReseaMultimedia Information Research DivisionNational Institute of InformaticsTokyoJapan