Advertisement

Sodium Loading in Critical Care

Reference work entry

Abstract

Critically ill patients are at risk of sodium retention. Current practices of patient management lead to high amount of sodium being administered often inadvertently and lead to high daily and cumulative sodium balance. Positive sodium balance may have adverse outcomes in addition to those observed with positive fluid balance as sodium being an extracellular ion leads to expansion of extracellular spaces with concomitant intracellular dehydration.

Keywords

Serum Osmolarity Sodium Balance Renin Angiotensin Aldosterone System Positive Fluid Balance Pulmonary Vascular Permeability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

List of Abbreviations

[Na+]

Sodium concentration

ANP

Atrial natriuretic peptide

BP

Blood pressure

CVP

Central venous pressure

Na+

Sodium

PEEP

Positive end-expiratory pressure

PGI2

Prostacyclin

RAAS

Renin-angiotensin-aldosterone system

References

Book Chapter

  1. Burridge N. Australian injectable drugs handbook. Collingwood: The Society of Hospital Pharmacists of Australia; 2008.Google Scholar
  2. Trissel LA. Handbook on injectable drugs. Bethesda: American Society of Health System Pharmacists; 2001.Google Scholar
  3. Trissel LA. Handbook on injectable drugs. Bethesda: American Society of Health System Parhmacists; 2011.Google Scholar

Journal Articles

  1. Acquarone N, Garibotto G, Pontremoli R, et al. Hypernatremia associated with severe rhabdomyolysis. Nephron. 1989;51:441–2.CrossRefPubMedGoogle Scholar
  2. Adrogué HJ, Madias NE. Hypernatremia. N Engl J Med. 2000;342:1493–9.CrossRefPubMedGoogle Scholar
  3. Andrivet P, Adnot S, Brun-Buisson C, et al. Involvement of ANF in the acute antidiuresis during PEEP ventilation. J Appl Physiol. 1988;65:1967–74.PubMedGoogle Scholar
  4. Angle N, Hoyt DB, Coimbra R, et al. Hypertonic saline resuscitation diminishes lung injury by suppressing neutrophil activation after hemorrhagic shock. Shock. 1998;9:164–70.CrossRefPubMedGoogle Scholar
  5. Becker D, Bereiter-Hahn J, Jendrach M. Functional interaction of the cation channel transient receptor potential vanilloid 4 (TRPV4) and actin in volume regulation. Eur J Cell Biol. 2009;88:141–52.CrossRefPubMedGoogle Scholar
  6. Bihari S, Ou J, Holt AW, Bersten AD. Inadvertent sodium loading in critically ill patients. Crit Care Resusc. 2012;14:33–7.PubMedGoogle Scholar
  7. Bihari S, Peake SL, Seppelt IM, Williams P, Bersten AD. Sodium administration in critically ill patients in Australia and New Zealand: a multi-centre point prevalence study. Crit Care Resusc. 2013a;15:294–300.PubMedGoogle Scholar
  8. Bihari S, Baldwin CE, Bersten AD. Fluid balance does not predict estimated sodium balance in critically ill mechanically ventilated patients. Crit Care Resusc. 2013b;15:89–96.PubMedGoogle Scholar
  9. Bihari S, Taylor S, and Bersten AD. Inadvertent sodium loading with renal replacement therapy in critically ill patients. J Nephrol. 2014a;27:439–44.CrossRefPubMedGoogle Scholar
  10. Bihari S, Peake SL, Bailey M, Pilcher D, Prakash S, Bersten A. Admission high serum sodium is not associated with increased intensive care unit mortality risk in respiratory patients. J Crit Care. 2014b;29:948–54.CrossRefPubMedGoogle Scholar
  11. Boemke W, Krebs M, Djalali K, et al. Renal nerves are not involved in sodium and water retention during mechanical ventilation in dogs. Anesthesiology. 1998;89:942–53.CrossRefPubMedGoogle Scholar
  12. Bouchard J, Soroko SB, Chertow GM, et al. Program to Improve Care in Acute Renal Disease (PICARD) Study Group. Fluid accumulation, survival and recovery of kidney function in critically ill patients with acute kidney Injury. Kidney Int. 2009;76:422–7.CrossRefPubMedGoogle Scholar
  13. Boyd JH, Forbes J, Nakada TA, et al. Fluid resuscitation in septic shock: a positive fluid balance and elevated central venous pressure are associated with increased mortality. Crit Care Med. 2011;39:259–65.CrossRefPubMedGoogle Scholar
  14. Brater DC. Pharmacokinetics of loop diuretics in congestive heart failure. Br Heart J. 1994;72:S40–3.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Bratusch-Marrain PR, DeFronzo RA. Impairment of insulin-mediated glucose metabolism by hyperosmolality in man. Diabetes. 1983;32:1028–34.CrossRefPubMedGoogle Scholar
  16. Chen L, Liu C, Liu L. Osmolality-induced tuning of action potentials in trigeminal ganglion neurons. Neurosci Lett. 2009a;452:79–83.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Chen L, Liu C, Liu L, et al. Changes in osmolality modulate voltage-gated sodium channels in trigeminal ganglion neurons. Neurosci Res. 2009b;64:199–207.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Darmon M, Diconne E, Souweine B, et al. Prognostic consequences of borderline dysnatremia: pay attention to minimal serum sodium change. Crit Care. 2013;17:R12.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Deitch EA, Shi HP, Feketeova E, et al. Hypertonic saline resuscitation limits neutrophil activation after trauma-hemorrhagic shock. Shock. 2003;19:328–33.CrossRefPubMedGoogle Scholar
  20. Druml W, Kleinberger G, Lenz K, et al. Fructose-induced hyperlactemia in hyperosmolar syndromes. Klin Wochenschr. 1986;64:615–18.CrossRefPubMedGoogle Scholar
  21. Finn PJ, Plank LD, Clark MA, et al. Progressive cellular dehydration and proteolysis in critically ill patients. Lancet. 1996;347:654–6.CrossRefPubMedGoogle Scholar
  22. Gamrin L, Essen P, Forsberg AM, et al. A descriptive study of skeletal muscle metabolism in critically ill patients: free amino acids, energy-rich phosphates, protein, nucleic acids, fat, water, and electrolytes. Crit Care Med. 1996;24:575–83.CrossRefPubMedGoogle Scholar
  23. Garcia-Elias A, Lorenzo IM, Vicente R, et al. IP3 receptor binds to and sensitizes TRPV4 channel to osmotic stimuli via a calmodulin-binding site. J Biol Chem. 2008;283:31284–8.CrossRefPubMedGoogle Scholar
  24. George C, Bellomo R. Changes in the incidence and outcome for early acute kidney injury in a cohort of Australian intensive care units. Crit Care. 2007;11:R68.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Goldsmith SR. The role of vasopressin in congestive heart failure. Cleve Clin J Med. 2006;3:S19–23.CrossRefGoogle Scholar
  26. Hoorn EJ, Betjes MG, Weigel J, et al. Hypernatremia in critically ill patients: too little water and too much salt. Nephrol Dial Transplant. 2008;23:1562–8.CrossRefPubMedGoogle Scholar
  27. Hoste EA, Clermont G, Kersten A, et al. RIFLE criteria for acute kidney injury are associated with hospital mortality in critically ill patients: a cohort analysis. Crit Care. 2006;10:R73.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Intersalt Cooperative Research Group. Intersalt: an international study of electrolyte excretion and blood pressure. Results for 24 hour urinary sodium and potassium excretion. BMJ. 1988;297:319–28.CrossRefGoogle Scholar
  29. Junger WG, Rhind SG, Rizoli SB, et al. Resuscitation of traumatic hemorrhagic shock patients with hypertonic saline-without Dextran-Inhibits Neutrophil and Endothelial cell activation. Shock. 2012;38:341–50.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Kaczmarczyk G, Rossaint R, Altmann C, et al. ACE inhibition facilitates sodium and water excretion during PEEP in conscious volume expanded dogs. J Appl Physiol. 1992;73:962–7.PubMedGoogle Scholar
  31. Keen ML, Gotch FA. The association of the sodium “setpoint” to interdialytic weight gain and blood pressure in hemodialysis patients. Int J Artif Organs. 2007;30:971–9.PubMedGoogle Scholar
  32. Kim JY, Choi SH, Yoon YH, et al. Effects of hypertonic saline on macrophage migration inhibitory factor in traumatic conditions. Exp Theror Med. 2013;5:362–6.Google Scholar
  33. Kotchen TA, Cowley Jr AW, Frohlich ED. Salt in health and disease – a delicate balance. N Engl J Med. 2013;368:1229–37.CrossRefPubMedGoogle Scholar
  34. Kozeny GA, Murdock DK, Euler DE, et al. In vivo effects of acute changes in osmolality and sodium concentration on myocardial contractility. Am Heart J. 1985;109:290–6.CrossRefPubMedGoogle Scholar
  35. Lenz K, Gossinger H, Laggner A, et al. Influence of hypernatremic-hyperosmolar state on hemodynamics of patients with normal and depressed myocardial function. Crit Care Med. 1986;14:913–14.PubMedGoogle Scholar
  36. Liedtke W, Friedman JM. Abnormal osmotic regulation in trpv4−/− mice. Proc Natl Acad Sci U S A. 2003;100:13698–703.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Lindner G, Funk GC, Schwarz C, et al. Hypernatremia in the critically ill is an independent risk factor for mortality. Am J Kidney Dis. 2007;50:952–7.CrossRefPubMedGoogle Scholar
  38. Lobo DN, Bostock KA, Neal KR, et al. Effect of salt and water balance on recovery of gastrointestinal function after elective colonic resection: a randomised controlled trial. Lancet. 2002;359:1812–18.CrossRefPubMedGoogle Scholar
  39. Loomis WH, Namiki S, Hoyt DB, et al. Hypertonicity rescues T cells from suppression by trauma-induced anti-inflammatory mediators. Am J Physiol Cell Physiol. 2001;281:C840–8.PubMedGoogle Scholar
  40. Mikkelsen ME, Christie JD, Lanken PN, et al. The adult respiratory distress syndrome cognitive outcomes study: long-term neuropsychological function in survivors of acute lung injury. Am J Respir Crit Care Med. 2012;185:1307–15.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Mizuno A, Matsumoto N, Imai M, et al. Impaired osmotic sensation in mice lacking TRPV4. Am J Physiol Cell Physiol. 2003;285:C96–101.CrossRefPubMedGoogle Scholar
  42. Moss GS. Pulmonary involvement in hypovolemic shock. Annu Rev Med. 1972;23:201–28.CrossRefPubMedGoogle Scholar
  43. Moss GS, das Gupta TK, Newson B, Nyhus LM. Morphologic changes in the primate lung after hemorrhagic shock. Surg Gynecol Obstet. 1972;134:3–9.PubMedGoogle Scholar
  44. Moss GS, das Gupta TK, Newson B, Nyhus LM. The effect of saline solution resuscitation on pulmonary sodium and water distribution. Surg Gynecol Obstet. 1973;136:934–40.PubMedGoogle Scholar
  45. Opas LM, Adler R, Robinson R, et al. Rhabdomyolysis with severe hypernatremia. J Pediatr. 1977;90:713–16.CrossRefPubMedGoogle Scholar
  46. Plank LD, Connolly AB, Hill GL. Sequential changes in the metabolic response in severely septic patients during the first 23 days after the onset of peritonitis. Ann Surg. 1998;228:146–58.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Plank LD, Hill GL. Similarity of changes in body composition in intensive care patients following severe sepsis or major blunt injury. Ann N Y Acad Sci. 2000;904:592–602.CrossRefPubMedGoogle Scholar
  48. Quadri SK, Bhattacharjee M, Parthasarathi K, et al. Endothelial barrier strengthening by activation of focal adhesion kinase. J Biol Chem. 2003;278:13342–9.CrossRefPubMedGoogle Scholar
  49. Rossaint R, Krebs M, Forther J, et al. Inferior vena caval pressure increase contributes to sodium and water retention during PEEP in awake dogs. J Appl Physiol. 1993;75:2484–92.PubMedGoogle Scholar
  50. Safdar Z, Wang P, Ichimura H, et al. Hyperosmolarity enhances the lung capillary barrier. J Clin Invest. 2003;112:1541–9.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Safdar Z, Yiming M, Grunig G, et al. Inhibition of acid-induced lung injury by hyperosmolar sucrose in rats. Am J Respir Crit Care Med. 2005;172:1002–7.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Santos SF, Peixoto AJ. Sodium balance in maintenance hemodialysis. Semin Dial. 2010;23:549–55.CrossRefPubMedGoogle Scholar
  53. Seri I, Kone BC, Gullans SR, et al. Locally formed dopamine inhibits Na+−K+−ATPase activity in rat renal cortical tubule cells. Am J Physiol. 1988;255:F666–73.PubMedGoogle Scholar
  54. Seri I, Kone BC, Gullans SR, et al. Influence of Na+ intake on dopamine- induced inhibition of renal cortical Na(+)-K(+)-ATPase. Am J Physiol. 1990;258:F52–60.PubMedGoogle Scholar
  55. Shi HP, Deitch EA, Da Xu Z, et al. Hypertonic saline improves intestinal mucosa barrier function and lung injury after trauma hemorrhagic shock. Shock. 2002;17:496–501.CrossRefPubMedGoogle Scholar
  56. Tafreshi J, Hoang TH, Grigorian T, et al. Impact of iatrogenic, excessive, nondietary sodium administration in patients with acute heart failure exacerbation on hospital length of stay. Pharmacotherapy. 2011;31:58–61.CrossRefPubMedGoogle Scholar
  57. Tanaka M, Oida E, Nomura K, Nogaki F, Fukatsu A, Uemura K, Yashiro M, Kimura T, Muso E, Ono T. The Na+−excreting efficacy of indapamide in combination with furosemide in massive edema. Clin Exp Nephrol. 2005;9:122–6.CrossRefPubMedGoogle Scholar
  58. Thijssen S, Raimann JG, Usvyat LA, et al. The evils of intradialytic sodium loading. Contrib Nephrol. 2011;171:84–91.CrossRefPubMedGoogle Scholar
  59. Trubuhovich RV. Inadvertent sodium loading in critically ill patients – plus some pedantry. Crit Care Resusc. 2012;14:163–4.PubMedGoogle Scholar
  60. Uchino S, Kellum JA, Bellomo R, et al. Acute renal failure in critically ill patients: a multinational, multicenter study. JAMA. 2005;294:813–18.CrossRefPubMedGoogle Scholar
  61. Uchino S, Bellomo R, Goldsmith D, et al. An assessment of the RIFLE criteria for acute renal failure in hospitalized patients. Crit Care Med. 2006;34:1913–17.CrossRefPubMedGoogle Scholar
  62. Wang S, Singh RD, Godin L, et al. Endocytic response of type I alveolar epithelial cells to hypertonic stress. Am J Physiol Lung Cell Mol Physiol. 2011;300:L560–8.CrossRefPubMedPubMedCentralGoogle Scholar
  63. Wegiersk T, Lewandrowski U, Muller B, et al. Tyrosine phosphorylation modulates the activity of TRPV4 in response to defined stimuli. J Biol Chem. 2009;284:2923–33.CrossRefGoogle Scholar
  64. Wiedemann HP, Wheeler AP, Bernard GR, et al. Comparison of two fluid-management strategies in acute lung injury. N Engl J Med. 2006;354:2564–75.CrossRefPubMedGoogle Scholar
  65. Wilkins MA, Su X-L, Palayew MD, et al. The effects of posture change and continuous positive airway pressure on cardiac natriuretic peptides in congestive heart failure. Chest. 1995;107:909–15.CrossRefPubMedGoogle Scholar
  66. Worthley LI, Guerin M, Pain RW. For calculating osmolality, the simplest formula is the best. Anaesth Intensive Care. 1987;15:199–202.PubMedGoogle Scholar
  67. Yin J, Kuebler WM. Mechanotransduction by TRP channels: general concepts and specific role in the vasculature. Cell Biochem Biophys. 2010;56:1–18.CrossRefPubMedGoogle Scholar

Online Document

  1. Abotts. Nutritional information: nepro. Nephro with carb steady – therapeutic nutrition for people on dialysis [Online]; 2011. http://nepro.com. Accessed Oct 2012.
  2. Nutricia. Product information. Nutricia advanced medical nutrition. [Online]; 2011. http://uk.nutricia.com. Accessed Oct 2012.
  3. Nutrient reference values for Australia and New Zealand including recommended dietary intakes. 2013. http://www.nrv.gov.au/resources/_files/n35-sodium.pdf. Accessed Oct 2013.
  4. UBM Medica Australia. eMIMS [Software]. St. Leonard: UBM Medica Australia Pty Ltd.; 2010. Accessed Oct 2012.Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Intensive and Critical Care UnitFlinders Medical Centre and Flinders UniversityBedford ParkAustralia

Personalised recommendations